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Abstract 

Fibrous porous materials are involved in a wide range of applications including 

composite fabrication, filtration, compact heat exchangers, fuel cell technology, and 

tissue engineering to name a few. Fibrous structures, such as metalfoams, have unique 

characteristics such as low weight, high porosity, high mechanical strength, and high 

surface to volume ratio. More importantly, in many applications the fibrous 

microstructures can be tailored to meet a range of requirements. Therefore, fibrous 

materials have the potential to be used in emerging sustainable energy conversion 

applications.  

The first step for analyzing transport phenomena in porous materials is to 

determine the micro/macroscopic flow-field inside the medium. In applications where the 

porous media is confined in a channel, the system performance is tightly related to the 

flow properties of the porous medium and its interaction with the channel walls, i.e., 

macroscopic velocity distribution. 

Therefore, the focus of the study has been on:  

 developing new mechanistic model(s) for determining permeability and 

inertial coefficient of fibrous porous materials;  
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 investigating the effects of microstructural and mechanical parameters 

such as porosity, fiber orientation, mechanical compression, and fiber 

distribution on the flow properties and pressure drop of fibrous structures;  

 determining the macroscopic flow-field in confined porous media where 

the porous structure fills the channel cross-section totally or partially. 

A systematic approach has been followed to study different aspects of the flow 

through fibrous materials. The complex microstructure of real materials has been 

modelled using unit cells that have been assumed to be repeated throughout the media. 

Implementing various exact and approximate analytical techniques such as integral 

technique, point matching, blending rules, and scale analysis the flow properties of such 

media have been modelled; the targeted properties include permeability and inertial 

coefficient. In addition, fluid flow through microchannels, fully and partially filled with 

porous media, has been modelled using a volume-averaged equation, which is a novel 

approach in Microfluidics. 

To verify the developed models, several testbeds have been designed and 

experimental studies have been conducted with various fluids and porous materials. The 

proposed models have been verified with the measured data and the experimental results 

reported by others.  

Keywords:  Fibrous porous media; Permeability; Inertial coefficient; Theoretical 

modeling; Numerical simulation; Experimental verification; Confined porous media; 

Metalfoams; Gas diffusion layers; Sustainable energy; Transport phenomena.  
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Executive Summary 

Fibrous porous materials are involved in a wide range of applications including 

composite fabrication, filtration, compact heat exchangers, paper production, fuel cell 

technology, and tissue engineering. In comparison with packed beds of spherical 

particles, fibrous structures have superior characteristics such as low weight, high 

porosity, high mechanical strength, and high surface to volume ratio. More importantly, 

in many applications the fibrous microstructures can be tailored to meet a range of 

requirements. Therefore, fibrous materials have the potential to be used in emerging 

sustainable energy conversion applications.  

Despite numerous existing studies, the transport characteristics of fibrous media 

are not fully understood. This is one of the several reasons for the current intense 

worldwide efforts to investigate transport phenomena in such structures. The first step is 

to determine the macroscopic flow-field inside and at the interface of the medium. As 

such, the motivation of the present study is to determine pressure drop and both 

microscopic and macroscopic flow-field in fibrous materials with focus on the following 

applications:  

Fuel cell technology: Gas diffusion layer (GDL) of polymer electrolyte 

membrane fuel cells (PEMFCs) is a fibrous porous material with a planar structure. In 

addition to mechanical support of the membrane, GDL allows transport of reactants, 

products, and electrons from the bipolar plate towards the catalyst layer and vice versa. 
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In-plane and through-plane gas permeability of GDL affects the PEM fuel cell 

performance and plays a key role in the design and optimization process of PEMFCs. 

Compact heat exchangers: Open cell metalfoams, formed by small ligaments 

creating interconnected dodecahedral-like cells, have unique features including: excellent 

surface-area-to-volume ratio, high temperature tolerance, low density (typically with 

specific gravity of 0.1), high mechanical strength, and corrosion resistance in comparison 

with regular steel fins. Foams can be constructed from a wide variety of materials 

including metals (aluminum, nickel, copper, iron, and steel alloys), polymers, and carbon. 

As a result of recent decrease in production costs, metalfoams have received a special 

attention as a candidate for designing compact heat exchangers in the past decade. In-

depth understanding of flow in metalfoams is important for any thermal and heat 

exchanger effectiveness analysis  

Filtration: Filtration is a common way for separating particles from the bulk 

fluid. Usually, a porous structure or membrane is used for trapping the targeted particles. 

The microstructure of a majority of filtering media is fibrous. An understanding of flow-

field and the resulting pressure drop is crucial in the design and optimization of filtration 

systems.  

The morphological parameters that are commonly used to describe porous media 

include: 1) porosity that is the ratio of the void volume to the total volume and 2) fiber 

diameter. However, in special cases, other parameters have also been used, e.g., the 

polytetrafluoro ethylene (PTFE) content for GDLs and pore density, number of pores per 

unit length, typically expressed in pores per inch (PPI), for metalfoams.  
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In many applications, the porous media is embedded inside a channel (confined 

porous media), occupying the entire or part of the channel’s cross-section. 

Mini/microchannels filled with porous media (micro-porous channels) are currently used 

in filtration, detection of particles, compact heat exchanger design, fuel cell technology, 

and tissue engineering. Such structures have also been used in biological and life sciences 

for analyzing biological materials such as proteins, DNA, cells, embryos, and chemical 

reagents. The performance of the abovementioned systems is tightly linked to the flow 

properties of the porous media and its interaction with the channel walls.  

Objectives 

The main goals of the proposed research can be summarized as:  

 Developing new mechanistic model(s) for the permeability and the inertial 

coefficient of fibrous porous materials with 1, 2, and 3 directional 

microstructures. 

 Investigating the effects of microstructural and mechanical parameters 

such as porosity, fiber orientation, mechanical compression, and fiber 

distribution on the flow properties and pressure drop of fibrous structures. 

 Determining the macroscopic flow-field and the resulting pressure drop in 

confined porous media, where the microstructure totally or partially fills 

the channel’ cross-section. 

The developed models will serve as a powerful tool in design and optimization 

process for engineers and scientist investigating a variety of areas including fuels cell 

technology, compact heat exchangers, tissue engineering, and filtration.  
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Methodology 

In this study, a systematic approach is adopted to study various aspects of fluid 

flow through fibrous materials. The problem is divided into smaller parts where 

analytical and experimental studies are carried out; Figure 1 shows the road map and the 

deliverables of the thesis.  

The focus of the present study is on developing fundamental models that can 

accurately predict the flow properties of fibrous porous media. The developed 

fundamental models can be tailored for each specific application through implementing 

specific morphological parameters. The random, complex microstructure of real porous 

materials is modeled using unit cells that are assumed to be repeated throughout the 

volume. Analysis of the considered unit cells enables one to develop compact solutions 

with a reasonable accuracy. Then, based on the microstructure and flow characteristics, 

various exact and approximate analytical techniques such as integral technique, point 

matching, blending rules, and scale analysis are employed to predict the pressure drop 

and as a result the permeability. Unlike the majority of the existing studies in the 

literature, the proposed models are applicable to various materials without a need to find 

a “tuning parameter”. In the moderate Reynolds number flows, numerical simulations are 

performed to propose accurate and compact relationships for predicting the inertial 

coefficient in the considered microstructures.  

To verify the developed models and proposed correlations, three new 

experimental test beds have been designed and built at Simon Fraser University to 

conduct experimental studies with various fluids and materials at different scales.  



 

 

ix 

Although the thrust of the present study is to determine the flow properties of 

GDLs and metalfoams, the reported results and the approach are applicable to any other 

fibrous material with similar microstructures.  

This dissertation is divided into 5 chapters and 3 appendices. Chapter 1 includes 

an introduction including a theoretical background on flow through fibrous media. A 

critical review of the pertinent literature is presented is Chapter 2 to justify the necessity 

for the research. Chapter 3 includes all the microscopic analysis for determining the flow 

properties (permeability and inertial coefficient) of fibrous structures. Boundary effects 

on macroscopic velocity distribution and pressure drop in channels partially and fully 

filled with porous media is investigated in Chapter 4. Summary and conclusions of the 

dissertation is presented in Chapter 5. This chapter also includes the possible 

continuations of the current dissertation. Appendix A includes all the experimental and 

numerical data collected from various sources and used in the dissertation. Details of the 

experimental measurements performed in the dissertation are listed in Appendix B. More 

details on the numerical simulations performed in the dissertation are provided in 

Appendix C. 
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Figure 1: The present research project road map and deliverables. 
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  Inertial coefficient, 1m  

  Distance between surfaces of adjacent fibers, m  

  Porosity 

   Microchannel cross-section aspect ratio 
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  Solid fraction,  1  

  Non-dimensional parameter in Eq. (18),  4/  

  Dimensionless coordinate, dr /2  

  Perimeter of flow passages, m  

  
Viscosity, 2/. msN  

eff  Effective viscosity, 2/. msN  

'  Viscosity ratio,  /' eff  

  Coordinate system 

  
Density, 3/ mKg  

  Constant in Eq. (19) 

1  Fluid electrical conductivity, mS /  

e  Effective electrical conductivity of a porous medium, mS /  

  Tortuosity factor, LLe /  
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1: INTRODUCTION 

A volume, partly occupied by a permeable solid or semi-solid phase while the rest 

is void or occupied by one or several fluids, is called a porous medium [1]. The solid 

phase can either form a consolidate matrix, e.g., metalfoams, sponges, or be distributed in 

the fluid phase, e.g., particulate mixtures and granular materials. According to this 

definition, porous media involve in a diverse range of natural and industrial systems. 

Consequently, transport phenomena in porous media have been the focus of numerous 

studies since the 1850s, which indicates the importance of this topic. Most of these 

studies; however, dealt with low and medium porosity structures such as granular 

materials and packed beds of spherical particles. 

When the solid particles have a cylindrical shape or the solid matrix is formed by 

high aspect ratio ligaments, the material is called a fibrous porous medium. Fibrous 

networks can form mechanically stable geometries with high porosity, the ratio of the 

void volume to the total volume up to 0.99 [2]. Moreover, these fibrous structures feature 

low-weight, high surface-to-volume ratio, high flow conductivity, high heat transfer 

coefficient, and high ability to mix the passing fluid [3]. Many natural and industrial 

materials involved in physiological systems [4], filtration [5], composite fabrication [6], 

compact heat exchangers [2, 3], paper production [7], and fuel cell technology [8, 9] have 

a fibrous structure, see Figure 2. As shown in Figure 3, based on the orientation of the 

fibers in space, fibrous structures can be categorized into three different groups:  
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(a) 

 

(b) 

 

(c) 

Figure 2: Scanning electron micrograph (SEM) of fibrous media in different applications a) 
electrospun fibrous scaffold for tissue engineering [10], b) aluminum foam, and c) Toray carbon 

paper (GDL). 

 one-directional (1D) such as tube banks where the axes of fibers are 

parallel to each other;  
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 two-directional (2D), e.g., gas diffusion layer (GDL) of fuel cells, where 

the fibers axes locate on planes parallel to each other, with an arbitrary 

distribution and orientation on these planes;  

 three-directional (3D) including metalfoams where their axes are 

randomly positioned and oriented in any given volume. With the 

exception of the 3D structures, the rest are anisotropic, i.e., the transport 

properties are direction dependent [11].  

Investigation of the transport properties of these materials dates back to 1940s for 

evaluating properties of fibrous filters, and 1980s for composite fabrication. Development 

of new materials for novel applications such as fuel cell technology and compact heat 

exchangers has motivated researchers to investigate the transport properties of such 

media. 

Proton exchange membrane fuel cells (PEMFCs) have shown the potential to be 

commercialized as green power sources in automotive, electronics, portables, and  

 

   

(a) (b) (c) 

Figure 3: Structures with different fibers orientation; a) one direction (1D), b) two directional (2D), 
and c) three directional (3D). 
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stationary applications [12]. PEMFCs complete an electrochemical reaction to combine 

hydrogen and oxygen releasing heat, water, and electricity which can be used for a 

variety of application. The membrane electrode assembly (MEA) is the heart of a 

PEMFC. MEA is comprised of a membrane, loaded by catalyst layers on each side, 

which is sandwiched between two porous layers named gas diffusion layers (GDLs) [12]. 

In addition to mechanical support of the membrane, GDL allows transport of reactants, 

products, and electrons from the bipolar plate towards the catalyst layer and vice versa. 

Therefore, thermophysical properties of GDLs such as gas and water permeability, 

thermal, and electrical conductivity affect the PEMFC performance and reliability by 

affecting reactant access and heat and product removal from catalyst layers [13, 14].  

An in-depth knowledge of the variation of these thermophysical properties with 

operating condition and microstructure is important in designing more reliable and 

efficient PEMFCs. The important parameters that have been used to describe carbon 

papers used as GDLs are: 1) porosity,   (defined as the void to the total volume ratio), 2) 

fiber diameter, 3) the polytetrafluoro ethylene (PTFE) content of the material.  

Improving the thermal performance of thermal management systems by designing 

more efficient heat exchangers currently receives an intense attention worldwide. In the 

past decade, as a result of the decrease in the production cost and the unique 

thermophysical properties, metalfoams have received a special attention [2]. Open cell 

metalfoams consist of small ligaments forming interconnected dodecahedral-like cells, 

see Figure 2. The shape and size of these open cells vary throughout the medium which 

make the structure random and in some cases anisotropic. The geometrical parameters 
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that are reported by manufacturers are: 1) porosity,  , 2) fiber diameter, and 3) pore 

density, number of pores per unit length, typically expressed in pores per inch (PPI). 

These structures can be constructed from a wide variety of materials including metals 

(aluminum, nickel, copper, iron, and steel alloys), polymers, and carbon.  

Determining the relationship between flow and the resulting pressure drop in 

fibrous porous materials is the first step in the analysis of transport phenomena in porous 

media. The complex geometry and randomness of porous materials makes developing 

exact pore-scale velocity distribution highly unlikely. From an engineering view point, 

however, it usually suffices to predict the macroscopic or volume averaged velocity 

rather than details of pore scale velocity distribution. As a result, the transport equations 

that are used in the design and analysis of fibrous systems are the volume averaged forms 

of the conventional equations.  

In the creeping flow regime, according to the Darcy equation the relationship 

between the volume averaged velocity through porous media, DU , and the pressure drop 

is linear [1]: 

DU
Kdx

dP 


 
(1) 

where K is the permeability and   is the fluid viscosity. The permeability can be 

interpreted as the flow conductance of a porous medium for a Newtonian fluid [15]. In 

higher Reynolds numbers, the relationship between the flow and pressure drop becomes 

nonlinear and a modified Darcy equation is used [1]: 
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2
DD UU

Kdx

dP 


 
(2) 

where   is the inertial coefficient. However, one needs to know K and   prior to using 

Eqs. (1) and (2). For a fibrous medium, the flow coefficients depend on the geometrical 

parameters of the solid matrix including porosity, fiber diameter, fiber shape, fiber 

distribution in space, fiber orientation relative to flow direction, and surface 

characteristics of the solid phase such as roughness and its behavior when in contact with 

the fluid, e.g., hydrophobicity. 

The flow coefficients of a porous material are determined either experimentally or 

through pore scale analysis of the porous media (determining the detail velocity 

distribution and finding the resulting pressure drop) where both are time consuming and 

expensive tasks. As a result, having general model(s) or correlation(s) that can accurately 

estimate the flow properties of different fibrous matrices is a useful tool for engineers. 

In applications where a porous material is confined by solid walls, e.g., 

microchannels filled with porous media (porous channels), or the flow inside the porous 

media is boundary driven, the boundary effects become significant. Micro-/mini-porous 

channels have potential applications in filtration [16], detection of particles, and tissue 

engineering. Moreover such structures have been used in biological and life sciences for 

analyzing biological materials such as proteins, DNA, cells, embryos, and chemical 

reagents [17, 18]. In addition, since micro-porous channels offer similar thermal 

properties such as high heat and mass transfer coefficients, high surface to volume ratio, 

and low thermal resistances to regular arrays of microchannels in the expense of lower 

pressure drops; these novel designs can be used in micro-cooling systems.  
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Another example of flow in confined porous media is channel-to-channel 

convection in PEMFCs. As a result of pressure difference between neighbor channels in 

the gas delivery channels of a PEMFC, reactants can pass through GDL in the in-plane 

direction, see Figure 4b. Channel-to-channel convection affects the reactant distribution 

in the fuel cell [13, 14]. 

Boundary driven flow through porous media can be seen in many cases such as 

channels partially filled porous media, hot spinning, and hot rolling. For example, gas 

flowing through GDL of fuel cells is driven in the in-plane direction by the flow in the 

gas delivery channels while is retarded by the porous matrix and the membrane that acts 

as a solid wall. Figure 4 shows a schematic of different layers in a fuel cell and the flow 

distribution inside a gas delivery channel and the underneath GDL.  

The Darcy and modified Darcy equations are not capable of including the 

boundary effects on the flow through fibrous media. Therefore, the Brinkman equation 

[19] is used instead: 

2

2
2

dy

Ud
UU

Kdx

dP D
effDD 


 

(3) 

where eff  is called the effective viscosity. The Brinkman equation includes a diffusive 

term that allows applying various boundary conditions. This equation was originally 

developed for analysis of packed beds of particles [1]. As such, investigation of its 

validity for fibrous materials and micro-systems is critical.  
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(a) 

Bipolar plate

GDLs
Membrane

Gas 
channels

Gas 
channels

 

(b) 

Channel to 
channel 

convection

 

(c) 

In-plane 
flow inside 

GDL  

Figure 4: a) Schematic of different layers in a fuel cell, b) channel-to-channel convection, and c) in-
plane flow inside GDL in the flow direction. 
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2: LITERATURE REVIEW 

The literature of flow through fibrous porous media is very rich. Researchers have 

used different analytical, numerical, and experimental techniques to determine the flow 

properties of fibrous materials. In this section, only a selection of the relevant 

publications and techniques is critically reviewed and discussed.  

2.1 Creeping flow through fibrous media 

The creeping flow and the permeability have been studied either experimentally 

or theoretically using capillaric and pore network models, deterministic, blending, and 

swarm theory approaches. 

2.1.1 Capillaric models and pore network modeling approach 

The flow of a fluid in many porous media can be modeled to occur in a network 

of closed conduits. The models based on this approach are called “capillaric permeability 

models” [20]. The Carman-Kozeny [1] model was based on this approach. In the 

Carman-Kozeny model, the pressure drop across the porous medium was calculated using 

an equivalent conduit of uniform but non-circular cross-section. The hydraulic diameter 

of the equivalent conduit was defined as [1]: 

mediuminchannelsofareasurface

mediumofvolumevoid4
HD

 
(4) 
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The seepage velocity, pU , in the equivalent channels was obtained from a Hagen-

Poiseuille type equation [1]: 

eH
p

LkD

P
U

0
216




 
(5) 

where eL  is the equivalent passage length of flow and 0k  is a shape factor. Kozeny 

assumed that the seepage velocity is related to the volume-averaged velocity through the 

Dupuit-Forchheimer assumption [21]: 


D

p
U

U 
 

(6) 

Carman [22] argued that the time taken for a fluid element to pass through a 

tortuous path of length eL  is greater than a straight path of length L , by an amount of 

LLe / . Accordingly, he proposed that: 



D

p
U

U 
 

(7) 

where   is the tortuosity factor. The tortuosity depends on microstructure of porous 

media and is always greater than or equal to unity. Combining Eqs. (5) the permeability 

becomes [1]: 

k

HH
k

D

k

D
K

1616

2

2
0

2 





 
(8) 
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The term 2
0kkk   is called the Kozeny constant [1]. It should be noted that the 

Carman-Kozeny model is based on the assumption of conduit flow. However, at high 

porosity fibrous materials this assumption breaks down.  

To improve the accuracy of capillaric approaches, the porous medium has been 

modeled by more complex networks of interconnected capillaries; this approach is also 

called pore network modeling [20]. The two main macroscopic properties used to define 

a porous medium are porosity and permeability that can be interpreted as the storage and 

the momentum transfer/pressure drop properties, respectively. Capillary network models 

exploit these in representing the medium as a network of pores and throats. The fluids are 

stored in the pores, while the volume occupied by throats is zero. The pressure drop is 

associated with the throats and pores do not apply any resistance against the flow [20]. A 

schematic of a two-dimensional network with each pore connected to four throats is 

depicted in Figure 5. For a reasonable accuracy, the considered network should resemble 

the structure of real porous media. Partly because of the lack of accurate information on 

the details of pore structure, such network models have not yet been successful to predict 

the single phase permeability. 

The study of Markicevic et al. [23] for employing the pore network modeling to 

predict the single phase permeability of GDLs showed that adjusting the distribution of 

the throat sizes is not feasible. However, this approach has been successfully employed 

for predicting the pattern of water transport in hydrophobic structures such as GDLs [24-

26].  
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PoresThroats

 

Figure 5: Schematic of capillary networks. 

2.1.2  Deterministic approach  

Models that use either an explicit or an approximate solution of the Navier-Stokes 

equations in the pore level are called “deterministic”. The deterministic studies can be 

classified into unit cell approach, random microstructure approach, and swarm theory. 

Unit cell approach: A common technique in analyzing fibrous structures is to 

model the medium with a unit cell which is assumed to be repeated throughout the 

medium. The unit cell (or basic cell) is the smallest volume which can represent the 

characteristics of the whole microstructure. Analytical studies of the pore-level flow, in 

general, solve the Stokes equation (a simplified form of the Navier–Stokes equation, 

which is valid for creeping flow) for a specified domain with periodic boundary 

conditions. The studied unit cells in the literature ranged from a single cylinder, ordered 

arrays of cylinders, to a specific number of cylinders in random arrangements. The 

relevant existing unit cell models in the literature are listed in Table 1. 

 

 



 

 

13 

Table 1: Summary of the relationships reported for permeability fibrous media. 

Authors (Year) Relationships1 and Remarks
Happel (1959) 

     
 

2
2

2

11

11
1ln

132

1
dK

























 

 Based on limited boundary method 
 Developed for 1D fibers (normal flow) 
 Accurate only for high porosities 

Happel (1959) 




16
5.1ln

2
2

22 d
K














  

 Based on limited boundary method 
 Developed for 1D fibers (parallel flow) 
 Accurate only for high porosities,  > 0.7 

Kwabara (1959) 

      212
2

3
1ln

132

1
dK 



 


 


 

 Based on limited boundary method 
 Developed for 1D fibers 
 Accurate only for medium to high porosities (normal 

flow) 
Hasimoto (1959) 

     2476.11ln
132

1
dK 


 


 

 Based on Fourier series method 
 Developed for square arrays of cylinders (normal flow) 
 Accurate for high porosities 

Sangani and 
Acrivos (1982)  

   
   

2
32 1076.41774.1

12476.11ln

132

1
dK
























 

 Based on an asymptotic solution 
 Developed for square arrays of cylinders (normal flow) 
 Accurate for  > 0.7 

Sangani and 
Acrivos (1982)  

   
   

2
32 1076.415.0

12490.11ln

132

1
dK
























 

 Based on an asymptotic solution 
 Developed for square arrays of cylinders (normal flow) 
 Accurate for  > 0.7 
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Authors (Year) Relationships1 and Remarks
Drummond and 
Tahir (1984) a 

 

 
   

    
























2

2
2

1605.11489.01

1796.012

473.11ln

132







d

K  

 Based on distributed singularities approach 
 Developed for square arrays of cylinders (normal flow) 
 Accurate for  > 0.7 

Drummond and 
Tahir (1984) b 








16
60486942.148919241.01

79589781.02

47633597.1ln
2

2

2 d
K























  

 Based on distributed singularities approach 
 Developed for square arrays of cylinders (parallel 

flow) 
 Accurate over the entire range 

Van der 
Westhuizen and Du 
Plessis (1996) 

 
 

2
5.1

2

196

11
dK








  

 Based on solution of the phase average Navier-Stokes 
equation 

 Random unidirectional fiber beds (normal flow) 
Sahraoui and 
Kaviany (1994)  

2
1.5

14
0606.0 dK





  

 Based on curve fit of numerical results (normal flow) 
 Accurate for 0.4 <  < 0.8 

Gebart (1992) 
2

2/5

1
1

4/

29

4
dK 



















 

 Based on lubrication theory 
 Developed for square arrays of fibers (normal flow) 
 Accurate for  < 0.7 

Jackson and James 
(1986)    2931.01ln

80

3
dK    

 Based on blending technique 
 For hydrogels 
 Developed for 3D structures (normal flow) 
 Accurate only for  > 0.85 
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Authors (Year) Relationships1 and Remarks
Tomadakis and 
Sotirchos (1993) 

 
 

    ,
)1(1ln8

2
2

)2(

2
dK

pp

p

































 

0,0   p , 1D structures (parallel) 

707.0,33.0   p , 1D structures (normal) 

521.0,11.0   p , 2D structures (parallel) 

785.0,11.0   p , 2D structures (normal) 

661.0,037.0   p , 3D structures 

 Based on the analogy between electrical and flow 
conductions  

 Developed for over lapping fibers 
 Developed for 1D, 2D, and 3D structures  
 Accurate for  < 0.85 

 
Van Doormaal and 
Pharoah (2009) 2

3.4

1
07.0 dK





  normal flow 

2
6.3

1
065.0 dK





  parallel flow 

 Based on curve fit of numerical results  
 Developed for 2D gas diffusion layers  
 Accurate only for 0.6 <  < 0.8 

Spielman and 
Goren (1968) 

 



















14
2

2

2

2

1
0

1
K

d
K

K

d
K

d

K
 

 Based on swarm method 
 Developed for 2D filters (normal flow) 
 Implicit and not easy-to use 
 0K  and 1K  are the modified second kind Bessel 

functions 
Spielman and 
Goren (1968) 

 



















14
2

23

5

3

1
0

1
K

d
K

K

d
K

d

K
 

 Based on swarm method 
 Developed for 3D filters (normal flow) 
 Implicit and not easy-to use 
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Authors (Year) Relationships1 and Remarks
Davies (1952) 

    32/3

2

156114  


d
K  

 Based on curve fit on experimental data 
 Developed for 2D filters (normal flow) 
 Accurate for  > 0.7 

Dukhan (2006)  11 exp baK   

PPI = 10, 1.0,101 1
11

1   ba  

PPI = 20, 1.0,109 1
12

1   ba  

PPI = 40, 16.0,108 1
15

1   ba  

 Proposed for metalfoams  
 Based on curve fit 

1 d : fiber diameter,   : porosity,   : solid volume fraction = 1 -   

Kuwabara [27] and Happel [28] studied flow transverse and parallel to a cylinder 

enclosed in a circular unit cell. In this approach, called the limited boundary method, it 

was assumed that the interaction of the cylinders with the flow around them was limited 

to the enclosed region.  

Hasimoto [29] and Sparrow and Loeffler [30] used series solutions for 

determining the permeability of ordered arrangement of cylinders to normal and parallel 

flow, respectively. Later, Sangani and Acrivos [31], performed analytical and numerical 

studies on viscous permeability of square and staggered arrays of cylinders for the entire 

range of porosity, when their axes were perpendicular to the flow direction. Their 

analytical models were based on Fourier series and lubrication theory for the high and 

low limits of porosity, respectively [31]. Drummond and Tahir [32] solved Stokes 

equations for normal and parallel flow towards different ordered structures. They used a 

distributed singularities method to find the flow-field in square, triangular, hexagonal and 

rectangular arrays. They [32] compared their results with numerical values of Sangani 
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and Acrivos [31] for normal flow and Happel [28] for the parallel case. The model of 

Drummond and Tahir [32] for normal permeability was very close to the analytical model 

of Sangani and Acrivos [31]; thus, it is only accurate for highly porous materials where   

> 0.7.  

Keller [33] and Gebart [34] assumed that the permeability of ordered fibrous 

structures is controlled by the narrow slots formed between the fibers; they applied the 

lubrication theory to determine the flow resistance through the gap. It should be noted 

that the lubrication theory is usually valid in the limit of close-packed fibers,   < 0.65. 

The abovementioned models are compared with experimental data in Section 2.4. 

The numerical studies on the flow through fibrous media are summarized in Table 

2. Several researchers have numerically simulated the creeping flow through ordered 

cylinders [31, 35-38]. In general, numerical simulations cover a wider range of porosity 

and fiber distribution in applying the unit cell approach for 1D, 2D, and 3D structures. 

Sangani and Yao [39] extended the studies of Sangani and Acrivos [31] for ordered 

structures to 1D cylinders in random distribution. Higdon and Ford [40] used a spectral 

boundary element formulation to calculate the hydraulic permeability of ordered, 

monomodal, three dimensional fibrous media. They considered simple cubic (SC), body-

centered cubic (BCC), and face-centered cubic (FCC) arrangements of fibers in a unit 

cell. Applying a singularity method, Clague and Philips [41] computed the permeability 

of ordered periodic arrays of cylinders and of disordered cubic (periodic) cells of 

cylindrical fibers. Clague et al. [42] employed a lattice-Boltzmann technique to study 

similar geometries and extended their studies to include bounded structures. Sobera and 

Kleijn [37] studied the permeability of 1D and 2D ordered and random fibrous media 
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both analytically and numerically. Their analytical model was a modification of the scale 

analysis proposed by Clauge et al. [42]. Boomsma et al. [43] used a finite volume method 

to solve the flow inside dodecahedral and tetrahedral unit cells to investigate flow 

properties of metalfoams. Palassini and Remuzzi [44] employed a finite element method 

to solve the Stokes equation for a tetrahedral array of fibers to predict the flow properties 

of glomerular basement membrane. 

Random microstructure approach: As a result of the recent significant growth 

of computational power, several researchers have tried to perform simulations on 

microstructures formed by a higher number of cylindrical fibers. These researchers have 

generated random microstructures that resemble the actual fibrous materials for different 

applications.  

Clauge and Philips [41] were among the pioneers in employing random 

microstructure approach. They used a numerical version of slender body theory to 

determine permeability of monodisperse and polydisperse random fibrous 

microstructures. Stylianopolous et al. [45], Clauge et al. [42], and Tahir and Tafreshi 

[46], used finite element, lattice Boltzmann, and finite volume methods, respectively to 

solve creeping flow inside 3D random fibrous structures. Koponen et al. [47] and Zobel 

et al. [48] performed numerical simulations for 2D structures using lattice Boltzmann and 

finite elements methods, respectively. 

Hao and Cheng [49] solved creeping flow through a mesh of 2D random fibers 

over a wide range of porosity   > 0.6 to model the GDL of PEM fuel cells. They used a 

Lattice Boltzmann method in their study. In a similar study Nabovati et al. [50] 
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performed lattice Boltzmann simulations for 3D random structures in the porosity range 

of   > 0.15. They also reported a correlation for calculating permeability. Lattice 

Boltzmann simulations of gas flow through several random fibrous structures were 

carried out by Vandoormaal and Pharoah [51] over the porosity range of 0.6 <   < 0.8. 

They reported numerical results for different fiber orientations which were an order of 

magnitude different in a constant porosity. 

Table 2: Summary of the selected numerical studies for fibrous media. 

Authors Structure Flow condition and Remarks1 

Sangani and Yao 
(1988) 

1D ordered and random 
arrays of monodisperse 
cylinders, 0.3 <   < 0.9 

 Normal and parallel flow 
 Re < 1 
 Multipole expansion method 

Sahraoui and 
Kaviany (1992) 

1D ordered and deformed 
cylinders, 0.4 <  < 0.8 

 Normal flow 
 Re < 200 
 Good agreement with 

experimental data 
 Finite volume method 

Edwards et al. 
(1990) 

1D ordered monodisperse 
and polydisperse cylinders, 
0.4 <  < 0.8 

 Normal flow 
 Re < 180 
 Not in good agreement with 

Ergun equation 
 Finite element method 

Higdon and Ford 
(1996) 

1D and 3D ordered unit 
cells, the entire range of 
porosity 

 Normal flow 
 Re < 180 
 Boundary element method 

Ghaddar (1995) 1D ordered and  random, 
0.4 <  < 0.8 

 Normal flow 
 Re < 200 
 In good agreement with experimental 

data 
 Parallel finite element method 

Johson and Deen 
(1996) 

2D unit cell,   = 0.32  Normal flow 
 Re < 1 
 Finite element method 

Clauge and 
Philips (1997) 

3D random monodisperse 
and polydisperse structures 

 Normal flow 
 Re < 1 
 Slender body theory 
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Authors Structure Flow condition and Remarks1 

Koponen et al. 
(1998) 

2D random mats,  
0.4 <  < 0.95 

 Normal flow 
 Re < 1 
 Lattice Boltzmann 

Martin et al. 
(1998) 

1D ordered monodisperse 
cylinders, 0.8 <  < 0.99 

 Normal flow 
 3 < Re < 180 
 Not in good agreement with Ergun 

equation 
 Finite volume method 

Koch and Ladd 
(1997) 

1D ordered and random 
structures,  > 0.45 

 Normal flow 
 Re < 180 
 Lattice Boltzmann method 

Clauge et al. 
(2000) 

3D random structures  Normal flow 
 Re < 1 
 Correlation is proposed 
 Lattice Boltzmann method 

Papathanasiou et 
al. (2001) 

1D ordered monodisperse 
and polydisperse arrays, 
 0.3 <  < 0.6 

 Normal flow 
 Re < 180 
 Not in good agreement with Ergun 

equation 
 A correlation is proposed for inertial 

coefficient 
 Finite element method 

Sobera and 
Kleijn (2006) 

1D and 2D  ordered and 
disordered unit cells, 
 0.1 <  < 0.8 

 Normal flow 
 Re < 1 
 A scale analysis method was also 

proposed 
 Finite volume method 

Rong et al. 
(2007) 

3D random,  
0.42 <  < 0.72 

 Normal flow 
 Re < 15 
 Inertial effects were significant 
 Lattice Boltzmann method 

Hellstrom and 
Lundstrom 
(2006) 

1D ordered arrays of 
cylinders , 0.3 <  < 0.6 

 Normal flow 
 Re < 1200 
 Not in good agreement with Ergun  

equation 
 Finite volume method 

Mattern and 
Deen (2008) 

1D bimodal charged fibers, 
 > 0.8 

 Normal flow 
 Re < 1 
 Finite volume method 

Jagathan et al. 
(2008) 

2D random structures,  
0.85 <  < 0.94 

 Normal flow 
 Re < 1 
 Digital volume imaging and finite 

volume method 
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Authors Structure Flow condition and Remarks1 

Stylianopolous 
et al. (2008) 

3D random structures, 
 > 0.55 

 Normal flow 
 Re < 1 
 In agreement with experimental 

results 
 Finite element method 

Nabovati et al. 
(2008) 

3D random structures, 0.08 
<  < 0.95 

 Normal flow 
 Re < 1 
 A correlation was proposed 
 Lattice Boltzmann method 

Tahir and 
Vahedi Tafreshi 
(2009) 

2D and 3D random 
structure,  > 0.8 

 Normal flow 
 Re < 1 
 Fiber orientation was significant 
 Finite volume method 

Hao and Cheng 
(2009) 

2D gas diffusion layers, 
 > 0.4 

 Parallel and normal flows 
 Re < 1 
 Flow tortuosity is also reported 
 Lattice Boltzmann method 

Vandoormaal 
and Pharoah 
(2008) 

2D gas diffusion layers, 
0.6 <   < 0.8 

 Parallel and normal flows 
 Re < 1 
 Correlations are also reported 
 Lattice Boltzmann method 

1 Reynolds number based on fiber diameter, 


 dU DRe  

Swarm Theory: Another approach in modeling creeping flow through a random 

packing of spheres or cylinders is to consider a reference geometry like a sphere or a 

cylinder surrounded by a shell representing the associated pore space. The shell is then 

embedded in a porous medium of permeability K, see Figure 6. The Stokes and the 

Brinkman equations are solved inside the shell and the porous medium, respectively. The 

permeability is determined in a way that the velocity distribution from both equations 

matches on the shell boundary. This approach, called the Swarm theory, was originally 

used by Neale and Nader [52] for packed beds of spheres. The same idea was followed by 
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Spielman and Goran [5] for 2D and 3D fibrous structures. They proposed two implicit 

models for calculating the permeability of such structures which are presented in Table 1. 

2.1.3 Blending rules (Mixing rules)  

An approximate method that has been used by researchers to estimate the 

permeability of real fibrous media is the blending technique. In this approach, the 

complex porous microstructure is modeled as a mixture/combination of fibrous structures 

with known permeability [53]. As such, it is expected that the equivalent permeability, 

eqK , to be related to the permeability of each component; the concept of blending 

technique for 2D fibrous mats is shown in Figure 7. It should be noted that there is no 

concrete rule for estimating the mixtures’ permeability. This approach was originally 

proposed by Happel [28] for predicting the permeability of 3D random materials which 

was not successful. In more recent studies, blending techniques have been successfully 

employed to estimate the permeability of fibrous mixtures such as hydrogels [54], fibers 

with different sizes [41], and fibers with different charges [55, 56]. 

 

 

Figure 6: Schematic of the swarm theory approach. 

r = a 

r = b 

UD 



 

 

23 

Flow

Parallel 
to flow 

direction

Normal 
to flow 

direction

2D structure

 

Figure 7: The blending technique concept for 2D structures. 

2.1.4 Analogy of hydraulic permeability with other diffusive properties 

Several researchers have tried to relate the permeability to different measurable 

transport properties of the porous medium. One of the properties that has been used for 

calculating the permeability is the electrical formation factor, F, which is defined as [20]: 

e
F


1

 
(9) 

where e  is the effective electrical conductivity of a porous medium of an insulating 

solid containing a conducting fluid of conductivity 1 .  

Johnson et al. [57] proposed the following approximate relation involving the 

electrical conductivity: 
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where: 
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2
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)(

2  
(11) 

E(r) is the local electric-field, dV and dS denote integrations over volume and the pore-

solid surface, respectively. The parameter   is a weighted pore volume-to-surface ratio 

that provides a measure of the dynamically connected parts of the pore region. 

Tomadakis and Sotirchos [58] used a random-walk simulation method to calculate the 

formation factor for randomly distributed overlapping fibers. Using their simulations 

results and combining Eqs. (10) and (11), Tomadakis and Robertson [11] reported a 

model for calculating permeability of 1D, 2D, and 3D fibrous structures, see Table 1. 

2.1.5 Experimental studies 

As a result of the diverse applications of fibrous materials, numerous 

experimental studies have been conducted for determination of the permeability of 

fibrous media; see for example [22, 36, 48, 59-71]. Good reviews of experimental works 

are available in Jackson and James [54], Astrom et al. [15], and Tomadakis and 

Robertson [11]. Although our motivation for the present study is mostly coming from 

sustainable energy applications such as fuel cell technology and use of metalfoams as 

media for heat transfer, a selection of experimental studies on various fibrous materials is 

summarized in Table 3. The experimental studies are selected such that structure 

inhomogeneity, channeling, fiber mobility, deflection, compression, fiber bending, fiber 
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surface slip, non-viscous flow, inertial effects, tube wall friction, capillary effects, surface 

tension, gas compressibility, fiber shape/size distribution, and fiber aspect ratio effects 

were not involved in the measurements. 

There are few experimental studies available in the literature that reported the 

permeability of GDLs in creeping flow regime. Williams et al. [72], Ihonen et al. [73], 

and Mueller et al. [74] measured the through-plane permeability of several GDLs. Most 

of their measurements were affected by existence of the micro porous layer. Prasanna et 

al. [75] and Mathias et al. [76] reported the through-plane permeability of several bare 

GDLs with various PTFE loadings.  

Ihonen et al. [73] showed that a reverse relationship exists between the in-plane 

permeability and compression. Recently, Feser et al. [8] studied the effects of 

compression and reported in-plane gas permeability as a function of porosity for a carbon 

cloth, a non-woven carbon fiber GDL, and a carbon paper. In a similar work, Gostick et 

al. [9] measured permeability of several commercial GDLs under various compressive 

loads and reported the in-plane permeability as a function of porosity. They also reported 

the through plane permeability of these GDLs. More details of the experimental studies 

can be found in Ref. [77].  

2.2 Inertial flow regime (moderate Reynolds numbers) 

Including the inertial effects in the flow analysis adds to the complexity of the 

problem. As such, the moderate Reynolds number flows through fibrous structures are 

mostly studied either numerically or experimentally rather than analytically in the 

literature.  
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2.2.1 Theoretical studies 

Khan et al. [78] employed an integral technique solution to determine pressure 

drop in tube banks with regular cylinder arrays, analytically. The velocity profiles were 

calculated from a combination of the potential flow and the boundary layer theories. 

Their model was developed for high Reynolds number flows, Re > 100, and could 

capture trends of the experimental data reported by others qualitatively. 

Effects of Reynolds number on the pressure drop through unidirectional mono-

disperse and bimodal fibers were investigated numerically by Nagelhout et al. [79], 

Martin et al. [80], Lee and Yang [81], Koch and Lodd [82], Edwards et al. [83], Ghaddar 

[84], and Papathanasiou et al. [85]. Their results, in general, confirmed the existence of a 

parabolic relationship between pressure drop and flow rate in the considered geometries. 

However, comparison of these numerical results with conventional models in the 

literature such as the Ergun equation was not successful [85]. 

The studies of moderate Reynolds number flows through 2D and 3D structures 

are not frequent. Recently, Rong et al. [86] used Lattice Boltzmann method to investigate 

flow in three dimensional random fiber network with porosities in the range of 0.48 <   

< 0.72. Their results were in agreement with Forchheimer equation which is in line with 

the observations of [86]. Boomsma et al. [43] have also studied flow in high porosity 3D 

fibrous structures to predict the flow properties of open cell aluminum foams.  
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Table 3: Summary of the selected experimental studies for flow properties of fibrous media. 

Authors 
Material 
Fiber category (flow direction) 

Test fluid 

maxRe  

Fiber 
diameter 
(mm) 

Carman (1938) 
stainless steel wire,  
0.681 <   < 0.765  
Random 3D (normal) 

Glycerol 
0.5 

0.328 

Wiggins et al. 
(1939) 

Glass rods, copper wire, glass 
wool, and fiber glass,  
0.685 <   <0. 93  
Random 3D (normal) 

Water 
8 

0.007-
0.408 

Sullivan (1942) 

Drill rod, copper wire, goat wool, 
Chinese hair, and blond hair 
Ordered and random 1D 
(parallel) 

Air 
N.A. 

0.008-7.2 

Bergelin et al. 
(1950) 

Various arrangements of tubes, 
0.42 <   < 0.65 
Ordered 1D (normal) 

Silicon oil 
10 

9.52, 
19.04 

Davies (1952)  
Glass wool, kapok, rayon, 
  > 0.8 
Random 2D (normal and parallel) 

Air 
N.A. 

N.A. 

Kirsch and Fuchs 
(1967) 

Various arrangements of kapron 
tubes,   > 0.7 
Ordered 1D (normal) 

Water 
0.005 

0.15, 
0.225, 0.4 

Kostornov and 
Schevchuck 
(1977) 

Kapron fibers 
2D random (normal) 

Water, alcohol 
10 

N.A. 

Jackson and 
James (1982) 

Hyaluronic acid polymer, 
  > 0.99 
3D random (normal) 

Water 
1×10-11 

1×10-6 

Gutowski et al. 
(1987) 

Fiber mats 0.2 <   < 0.5 
1D random (normal) 

Silicon oil 
N.A.. 

0.008 

Skartsis et al. 
(1992) 

Random carbon fibers and 
ordered aluminum rods,  
0.4 <   < 0.7 
1D ordered and random (normal 
and parallel) 

Water,  
Silicon oil 
N.A.. 

1.19-1.59 

Chmielewski and 
Jayaraman (1992) 

Acrylic rods in ordered 
arrangement,   = 0.7 
1D ordered (normal) 

Polybutene H25 and 
kerosene 
0.3 

4.76 

Khomami and 
Moreno (1997) 

Acrylic rods, 0.45 <   < 0.85 
1D ordered (normal) 

Silicon oil 
N.A. 

7.1, 14.2 

Rahli et al. (1997) 
Bronze and copper rods,  
0.4 <   < 0.9 
3D random (normal) 

Water 
N.A. 

0.15 
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Authors 
Material 
Fiber category (flow direction) 

Test fluid 

maxRe  

Fiber 
diameter 
(mm) 

Shih and Lee 
(1998) 

Random fiber mat U750,  
0.4 <   < 0.7 
2D random (parallel) 

Diphenyl-octyl-
pthalate 
N.A. 

0.02 

Zhong et al. 
(2006) 

Acrylic rods,  
0.9 <   < 0.975 
1D ordered (normal) 

Glycerol-water 
mixture 
0.17 

3.18 

Zobel et al. (2007) 
Polypropylene fibers,  
0.7 <   < 0.9 
2D random (normal) 

Air 
N.A.  

0.015 

Williams et al. 
(2004) 

Gas diffusion layer 
2D random (normal) 

Air 
N.A. 

0.007-
0.001 

Ihonen et al. 
(2004) 

Gas diffusion layer 
2D random (normal and parallel) 

Air 
N.A. 

0.009 

Prasanna et al. 
(2004) 

Gas Diffusion layer,   < 0.78 
2D random (normal) 

Air 
N.A. 

0.009 

Feser et al. (2006) 
Gas Diffusion layer,  
0.7 <   < 0.78 
2D random (parallel) 

Air 
N.A. 

0.009 

Gostick et al. 
(2006) 

Gas Diffusion layer,  
0.65 <   < 0.85 
2D random (normal and parallel) 

Air 
N.A. 

0.007-
0.001 

Hunt and Tien 
(1988) 

Chrome, aluminum, and nickel 
foams,  
0.94 <   < 0.97  
3D random (normal) 

Water 
ReK = 100 1 

N.A.  

Calmidi and 
Mahajan (2000) 

Aluminum foam, 
0.9 <   < 0.97 
3D random (normal) 

Air 
ReK = 135 

0.25-0.5 

Boomsma and 
Poulikakos (2002) 

Compressed aluminum foam, 
0.61 <   < 0.93 
3D random (normal) 

Air 
ReK = 27 

N.A. 

Hwang et al. 
(2002) 

Aluminum foam,  
0.7 <   < 0.9 
3D random (normal) 

Air 
Rep = 7800 2 

N.A. 

Bhattacharya et al. 
(2002) 

Aluminum foam,  
0.9 <   < 0.98 
3D random (normal) 

Air 
N.A. 

0.2-0.55 

Boomsma et al. 
(2003) 

Comressed aluminum foam,  
0.61 <   < 0.93 
3D random (normal) 

Air 
ReK = 140 

N.A. 

Kim et al. (2003) 
Aluminum foam,   = 0.92 
3D random (normal) 

Air 
Rep = 2900 

0.2-0.4 
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Authors 
Material 
Fiber category (flow direction) 

Test fluid 

maxRe  

Fiber 
diameter 
(mm) 

Khayargoli et al. 
(2004) 

Nickel and nickel-chromium, 
0.83 <   < 0.9 
3D random (normal) 

Air 
N.A. 

N.A. 

Tadrist et al. 
(2004) 

Comressed aluminum foam,  
0.88 <   < 0.89 
3D random (normal) 

Air 
N.A. 

0.69-1 

Dukhan (2006) 
Comressed aluminum foam,  
0.68 <   < 0.92 
3D random (normal) 

Air 
Rep = 1000 

0.25-0.5 

Bonnet et al. 
(2008) 

Copper, nickel, and nickel-
chromium 
3D random (normal) 

Air, water 
Rep = 2000 

N.A. 

1 ReK : Reynolds number based on K , 


 KU DRe  

2 Rep : Reynolds number based on pore diameter, 
 pD dU

Re  

2.2.2 Experimental studies (moderate Reynolds numbers) 

Most of the high Reynolds number (Re > 1000) experimental studies on porous 

media have been done to investigate the flow properties of heat exchangers. As a result, 

accurate correlations have been presented for the turbulent flow properties of 1D tube 

banks; see for example [87]. Recently, metalfoams have received an especial attention 

because of their thermophyscial properties that make them good candidates for compact 

heat exchangers. In metalfoams, the flow Reynolds numbers based on fiber diameter 

typically range from 10 to 500. In this range, the pressure drop is related to volume-

averaged velocity through the Forchheimer equation, Eq. (2) and both terms have the 

same order of magnitude in the overall pressure drop.  

Bergelin et al. [88] measured the pressure drop across several tube bank arrays for 

Re < 1000. Kirsch and Fuchs [63] studied similar structures for Re < 10 and found out 
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that the onset of transition from the Darcy equation to the Forchheimer equation is Re   

5-8. Few other studies have been conducted for moderate Reynolds flow through fibrous 

materials which are listed in.  

Hunt and Tien [89] were among the pioneers to investigate thermophysical 

properties of metalfoams in 1980s. Since then, several experimental works have reported 

the permeability and the inertial coefficient of various metalfoams [2, 90-100]; these 

studies are summarized in Table 3. It should be noted that the minimum Reynolds 

number in the listed studies generally has been higher than 1; this can affect the accuracy 

of the reported values for the permeability. 

2.3 Flow through channels partially-/fully-filled with porous media 

Although the fully-developed and developing flows in channels of various cross-

sections filled with porous media have been extensively studied in the literature, see for 

example [101-103]; however, such studies for micron size channels are not numerous. 

Hooman and his coworkers [104, 105] have investigated rarefied gas flows in 

microchannels filled with porous media. But, their theoretical analyses were not verified 

by experimental data. Few experimental studies have been conducted to study the flow 

through mini/microchannels filled with micro pin fins. Kosar et al. [106] studied laminar 

flow across four different arrays of micro pin fins embedded inside microchannels with 

100 m  depth. The pin fin diameters in their study were 50 and 100 m . They compared 

their results for Reynolds numbers in the range of 5-128 with existing correlations for 

relatively high Reynolds number flows through macro-scale tube banks and observed a 

significant deviation. Kosar et al. [106] related this deviation to the difference(s) between 
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flow in micron and regular-size systems. Vanapalli et al. [107] measured the pressure 

drop in microchannels of 250 m  depth containing various pillar arrays in the Reynolds 

number range of 50-500. On the contrary, their results for circular pillars were in good 

agreement with conventional relationships. Yeom et al. [108] reported low Reynolds 

number flow pressure drops through micro-porous channels with various fibers in square 

arrangements. The channels were 200 m  deep and the diameters of the microposts 

ranged from 200 m  to less than 10 m . Similar to [107], Yeom et al. [108] did not 

include wall effects into their analysis. Therefore, their results for high permeability 

arrays deviated from the values predicted by conventional theories. 

Fluid flow in channels or systems partially filled with porous media has a wide 

range of engineering applications such as electronic cooling, transpiration cooling, drying 

processes, thermal insulation, oil extraction, and geothermal engineering. The two main 

challenges involved in modeling this problem are: i) estimating the flow properties of 

porous media and ii) finding accurate boundary conditions for the interface region. 

Beaver and Joseph [109] were among the pioneers that investigated the interface 

boundary condition. They noticed a slip in the experimental values of velocity at the 

interface region. Vafai and Kim [110] developed an analytical solution for fluid flow at 

the interface between a saturated porous medium and a fluid layer. Kuznetsov [111] 

extended the analysis of [110] to higher Reynolds number flows and included the inertial 

effects in his analytical solution. Velocity distribution for channels partially filled with 

cylinders aligned with the flow direction was reported by Davis and James [112]. 

Velocity distribution in channels partially filled porous media has been studied 
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experimentally more recently by Tachie et al. [113], Agelinchaab et al. [114], and Arthur 

et al. [115] for porous media comprised of regular arrays of cylinders.  

To capture the interface velocity distribution more accurately, sophisticated 

boundary conditions has been proposed by Ochoa-Tapia and Whitaker [116] and 

Sahraoui and Kaviany [38]. However, numerical simulations of Alazmi and Vafai [117] 

showed that the difference in the predicted velocity distributions using various boundary 

conditions was not significant.  

2.4 Comparison of the existing models with experimental data 

The existing models/correlations for permeability of 1D, 2D, 3D, and metalfoams, 

listed in Table 1, are compared with the experimental data collected from various sources. 

Based on Figure 8-Figure 12 and the literature review in Sections 2.1-2.3 the following 

conclusions can be made: 

 The existing models for 1D, 2D, and 3D fibrous structures have limited ranges of 

accuracy and none of them can cover the entire range of porosity. 

 Most of the existing models can only capture the trends of experimental data 

qualitatively. 

 The effects of microstructure and geometrical parameters including fiber 

orientation and enclosing walls on flow properties of fibrous materials are not 

included in the majority of existing models. 

 No analytical model exists for the permeability of gas diffusion layer of fuel cells. 
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 The existing models are incapable of predicting the experimental data for 

permeability of fibrous materials with complex microstructure such as 

metalfoams. 

 Effects of GDL compression on the through-plane permeability have not been 

investigated. 

 Experimental data for permeability of metalfoams are usually based on the 

measurements in high Reynolds number flow, Re > 1; thus, a lack of such 

experiments exists in the creeping flow regime. 

 Accuracy of conventional theories developed for macro-scale confined porous 

media is not verified for microsystems. Moreover, the wall effects are not 

studied in micro-porous channels. 

 Effects of geometrical and structural properties on the pressure drop inside 

channels partially filled with porous media are not investigated. 

 Microscopic velocity distribution, which is required for heat and mass transfer 

analyses in fibrous media, is not available even for ordered arrays of cylinder. 

In general, one can say that the exiting studies have provided useful insights, but 

remained limited to specific ranges of porosity, structure, and size scale. This clearly 

indicates the need for a fundamental study and mechanistic models that can accurately 

predict the mechanical properties such as permeability and tortuosity as a function of the 

microstructural properties. 
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Figure 8: Comparison of the existing models for transverse (normal) flow permeability of square 
arrangements with experimental data. 
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Figure 9: Comparison of the existing models for through-plane flow through two directional (2D) 
structures with experimental data. 
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Figure 10: Comparison of the existing models for in-plane flow through two directional (2D) 
structures with experimental data. 
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Figure 11: Comparison of the existing models for three directional (3D) structures with experimental 
data. 
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Figure 12: Comparison of the existing models for metalfoams a) Dukhan [98] and b) Bonnet at al. 
[97] with experimental data. 
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2.5  Modeling road map 

Our critical review of the pertinent literature indicates the need for model(s) that 

can predict the permeability and inertial coefficient of fibrous porous materials. The main 

objectives of the current work are to: 

 Develop comprehensive analytical model(s) that can predict the flow 

properties of fibrous materials. 

 Investigate effects of the major relevant geometrical parameters such as 

porosity, pore diameter, fiber diameter, and fiber orientation on the flow 

properties of fibrous materials. 

 Study the boundary effects on the macroscopic flow-field and the resulting 

pressure drop in confined porous media. 

 Design and conduct an experimental program, using various fluids, to 

verify our theoretical investigation for permeability, inertial coefficient, 

and wall (boundary) effects. 

The focus of the proposed study will be on developing and verifying general 

model(s) that predict the flow properties of fibrous porous media. Following other 

analytical studies, a basic cell approach will be used. Based on the microstructure and 

flow characteristics, various exact and approximate analytical techniques described in 

previous sections will be employed to predict pressure drop and permeability. The 

modeling road map in the present study is shown in Figure 13.  
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The developed models and the analytical solutions will be verified through 

comparison with numerical simulations and experimental measurements. Due to the 

diversity of the investigated problems, three test rigs have been designed to conduct 

experiments with different fluids, fibrous material types and sizes, and materials scales.   

 

Figure 13: The modeling road map of the present dissertation. 
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3: FLOW PROPERTIES OF FIBROUS STRUCTURES 
(MICROSCOPIC ANALYSES) 

The modeling road map, shown in Figure 13, has been followed. This chapter 

discusses the flow properties of fibrous porous media that can be evaluated through 

microscopic analysis of the media.  

The simplest representations of fibrous porous media are regular ordered arrays of 

cylinders. First, compact models will be developed to predict the permeability of such 

structures in different directions. The analysis, then, will be extended to predict the 

permeability of more complex microstructures such as 2D and 3D fibrous matrices using 

various techniques such mixing rules and scale analysis. To cover a wider range of 

Reynolds numbers, numerical simulations are carried out to calculate the inertial 

coefficient in various ordered structures. 

3.1 Permeability of 1D touching fibers 

Since flow cannot pass perpendicular to touching fibers (see figures in Table 4), 

the normal permeability of these geometries is zero. Fluid passing parallel to the axis of 

unidirectional fibers experiences a channel-like flow; thus, the media is treated as a 

combination of parallel constant cross-sectional conduits. Therefore, the permeability can 

be related to the pressure drop in these channel-like conduits. In this approach, the cross 

sectional area and the perimeter of the channel are required. Pressure drop can be 

calculated using Darcy-Weisbach relation [118]: 
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where hD  is the hydraulic diameter, L  is the channel depth, f  is the Fanning friction 

factor, and   and DU  represent the porosity and the volume-averaged superficial 

velocity, respectively. Using Eq. (12) the permeability becomes: 
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Bahrami et al. [119] proposed a general model that predicts the pressure drop for 

arbitrary cross-sectional channels. In the model of [119], pressure drop is related to 

geometrical parameters of the cross section: 
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Table 4: Parallel permeability of touching fibers. 

Porosity ( ) Unit Cell 
*K , Eq. 
(15) 

*K , Data [60] 
Relative 

Difference (%) 

0.094* 

 

0.000088 0.000083 5.6 

0.215† 

 

0.00147 0.00121 17.6 

* dS
S

d
 ,

32 2

2  

† dS
S

d
 ,

4 2

2  
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where pI , A ,   are the polar moment of inertia, the area of the passage cross-section, 

and the porosity, respectively. Using the Darcy’s relationship and the model of [119], the 

non-dimensional permeability of periodic touching fibrous media can be found as: 

*22
*

16 pI

A

d

K
K





 (15) 

This relationship can be easily applied to any touching fibrous arrangements including; 

triangular, rectangular, hexagonal, and checker boarding.  

In Table 4, the values calculated form Eq. (15) are compared with the 

experimental data reported by Sullivan [60] for air flowing through staggered and square 

arrangements of copper wires, respectively. The difference between the predicted values 

by the proposed model and the experimental data is reasonable within the context of 

porous media. Equation (15) is also applicable to any foam like materials. 

3.2 Determination of the normal permeability of square fiber 

arrangements (integral technique) 

A powerful method for analyzing fluid mechanic problems without knowing the 

exact velocity distribution, is the integral technique solution. In this approach, a general 

shape of the velocity profile that satisfies conservation of mass and momentum on the 

boundaries is assumed. Then, using the assumed velocity distribution the flow equation is 

integrated over the entire region and the resulting pressure drop is determined.  

 



 

 

42 

 

Figure 14: Rectangular arrangement of cylinders and the considered unit cell. 

For the square arrangement of fibers shown in Figure 14, the unit cell (the 

smallest region which has identical flow properties to the whole media) is selected as the 

space between parallel cylinders. The porosity for this arrangement is: 

2

2

4
1

S

d 
 

(16) 

The permeability is related to the total pressure drop through the unit cell; see Eq. 

(1). Employing lubrication theory and neglecting inertial terms, the x -momentum 

equation reduces to Stokes equation: 

dx

dP

y

u


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2

2





 

(17) 

Determination of the exact velocity profile requires detail knowledge of the 

geometry of the medium which is not feasible in the case of porous media. Moreover, 

even with specified geometry and boundary conditions, finding exact analytical solution 
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is not guaranteed and is a difficult task for most cases. To overcome this problem, an 

integral method is employed in this study. The integral method provides a powerful 

technique for obtaining accurate but approximate solutions to rather complex problems 

with remarkable ease. The basic idea is that we assume a general shape of the velocity 

profile. It must be noted that we are not interested in the precise shape of velocity profile 

but rather need to know the pressure drop over the basic cell to calculate permeability. 

This can be accomplished by satisfying conservation of mass and momentum in a lumped 

fashion across the unit cell. As a result, an approximate parabolic velocity profile is 

considered which satisfies the boundary conditions within the unit cell. The border 

velocity is zero on the edge of the cylinders (no-slip condition) and reaches its maximum 

value at the half distance between cylinders in the x -direction, see Figure 14. It is also 

assumed that the maximum border velocity is a function of the porosity [71], i.e., as the 

porosity increases the maximum border velocity increases accordingly. For lower 

porosities, the border velocity is very small and for highly porous limits, it approaches to 

the Darcy velocity. In this study, the border velocity increases linearly from the edge of 

the fibers ( bu  = 0) to its peak at the center of the unit cell:  

274.0274.1)(
22

,
2
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
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

g
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x
gUu Db

 
(18) 

Moreover, the maximum border velocity is related to porosity through g( ) 

where g(0.215) =0 for touching fibers and g(1) =1 for high porosity limits. Therefore, the 

following velocity distribution is considered: 
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The total pressure drop of the unit cell is calculated employing an integral 

technique solution. In this approach, using continuity equation and the definition of 

volumetric flow rate, one can calculate pressure gradient as: 
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The pressure drop in the basic cell is calculated as: 
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Using the Darcy equation and introducing solid fraction as  1 , the permeability of 

square arrangement becomes: 



 

 

45 

   
   

1

2

5

1

2
*

1

21

1
tan18

1

11218

2

)(2112

































































 
















 g

K
 

(23) 

where 2* / dKK  , 274.0274.1)(  g , and  4/ . In Figure 15, Eq. (23) is 

compared with experimental data collected from several sources [61, 63, 68, 71, 120]. 

The 15% bounds of the model are also shown in the plot, to better demonstrate the 

agreement between the data and the model. The experiments were conducted using 

different fluids including: air, water, oil, and glycerol with a variety of porous materials 

such as metallic rods, glass wool, and carbon. It can be seen that the proposed model, i.e., 

Eq. (23), accurately predicts the trend of experimental data for square arrangement of 

fibers over the entire range of porosity [121]. 

To further investigate the accuracy of the assumed velocity distribution, creeping flow 

through the unit cell shown in Figure 14 was solved numerically using Fluent software 

[122]. Structured numerical grids with aspect ratios in the range of 1-5 were generated 

using Gambit [122]. SIMPLE algorithm was employed for pressure-velocity coupling 

[123]. 

Although fully-developed solution for normal flow can be found by simulating a single 

basic cell and applying periodic boundary condition to determine the developing length 

for flow in the medium, a set of 7-10 unit cells in series are considered and velocity 

profiles are compared at the entrance to each unit cell; details of the numerical results are 

provided in Appendix C. The inlet velocity of the media was assumed to be uniform. 

Constant pressure boundary condition was applied on the computational domain outlet.  
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Figure 15: Comparison of the present model for permeability of square arrays of fibers with 
experimental data. 

The symmetry boundary condition was applied on the side borders of the considered unit 

cells; this means that the normal velocity and the gradient of the parallel component of 

velocity on the side borders are zero; see Figure 16a. 

In Figure 16b, the numerically calculated velocity profiles are compared with the 

experimental data of Zhong et al. [71] for the normal flow through the fibrous media with 

 =0.9 in several locations. From Figure 17, it is clear that the parabolic velocity 

assumption is not realistic. After considerable investigations, the following distribution is 

in a better agreement with the numerical results: 
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(24) 

where   is a constant, and   is half of the distance between surface of adjacent fibers. 

To improve the accuracy of our previous model, a modifying function is defined such that 
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compensates for the difference between the numerical values of pressure drop and those 

obtained from parabolic velocity assumption on the cylinders: 

)(fPP parabolic 
 

(25) 
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Figure 16: a) A typical numerical grid and the boundary conditions used in the analysis for  = 0.65, 
b) comparison of the present numerical and the experimental data for the velocity profiles in normal 

flow and  = 0.9. 
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Figure 17: Comparison of the present numerical and parabolic velocity profiles in normal flow,  = 
0.9. 

Several functions were tested and the following correlation was found accurate for 

predicting the correction function: 

  58.2/1341.1343.1)(  f
 

(26) 

Therefore, the normal permeability of square arrangement becomes: 
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(27) 

This equation can predict the numerical results within 5% accuracy over the entire range 

of porosity. 

3.3 Parallel permeability of ordered arrangements  

In the following sub-sections, parallel flow through various ordered arrangements, 

shown in Figure 18, will be investigated [124].  



 

 

49 

Using geometric symmetry, only the selected regions of the unit cells are 

considered in the analysis. The solid volume fraction ( ) and porosity ( ) of square, 

staggered, and hexagonal arrays are: 
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Therefore, the minimum possible values of   for square, staggered, and hexagonal 

arrangements with no overlapping are 0.215, 0.094, and 0.395, respectively. These values 

indicate the touching limit of fibers. 

The conservation of linear momentum, Poisson’s equation, in the cylindrical 

coordinate system reads: 
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where w is the velocity component in the z-direction. Following Sparrow and Loeffler 

[30], the general solution of the Poisson’s equation in the cylindrical coordinate is 

considered: 
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For square arrangement, symmetry lines are located at  = 0 and  =  /4. The 

first condition results in kF = 0 and the second condition holds when k = 4, 8, 12, … . 

The no-slip boundary condition on the solid walls leads to: 
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Figure 18: Unit cell for a) square, b) staggered, and c) hexagonal arrangements. 
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Total frictional force exerted on the fluid by solid rods must be balanced by the net 

pressure force acting over the entire cross-section of the basic cell: 
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Solving for Eq. (32), the constant B  can be found: 
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Consequently, the velocity distribution becomes: 
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(34) 

The last constant, kG , is found by applying the symmetry condition on the unit cell 

border where  cos2/Sr  . Therefore, one can write: 
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where: 
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Sparrow and Loeffler [30] applied Eq. (35) at a finite number of points along the 

boundary and solved the resulting set of linear equations to determine the unknown 

coefficients, i.e., kg . The same approach is followed here and the calculated coefficients 

for several porosities are listed in Table 5. The listed values are in agreement with the 

values reported by Sparrow and Loeffler [30].  

The triangular unit cell section for the staggered fiber arrangements is shown in 

Figure 18b. The symmetry boundaries are located at  = 0 and  =  /6. The governing 

equation and its general solution are still Eqs. (29) and (30). Following the same 

procedure described above and applying symmetry boundary conditions, one can find: 
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The unknown coefficients are evaluated with the same approach used for square 

arrangements and the results as listed in Table 5.  

Adopting the same approach and considering the location of the symmetry lines 

for hexagonal arrays at  = 0 and  =  /3, the velocity distribution can be found as: 
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The unknown coefficients are listed in Table 5. From the listed coefficients in 

Table 5 and the form of the series solutions in Eqs. (34), (37), and (38), it is expected that 

truncating the series from the second term, does not affect the velocity distributions 

significantly. Our analysis also showed that substituting 1g  with an average value has a 
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negligible impact on the predicted results (less than 4 percent). Therefore, 1g  is replaced 

by -0.107, -0.0437, and -0.246 for square, staggered, and hexagonal arrangements, 

respectively. Hence, the velocity distributions become [124]: 

Table 5: Calculated coefficients in velocity distribution. 

Square arrangement 

dS /    1g  2g  3g  4g  5g  

4.0 0.95 -0.1253 -0.0106 -0.0006 0 0 

2.0 0.80 -0.1250 -0.0105 -0.0006 0 0 

1.5 0.65 -0.1225 -0.0091 -0.0002 0 0 

1.2 0.45 -0.1104 -0.0024 -0.0015 0.0003 0 

1.1 0.35 -0.0987 0.0036 0.0029 0.0005 0 

1.05 0.29 -0.0904 0.0073 0.0032 0.0002 0 

Staggered arrangement 

dS /    1g  2g  3g  4g  5g  

4.0 0.94 -0.0505 -0.0008 0.0000 0 0 

2.0 0.77 -0. 0505 -0.0008 0.0000 0 0 

1.5 0.60 -0. 0502 -0.0007 0.0001 0 0 

1.2 0.37 -0. 0469 0.0007 0.0002 0.0000 0 

1.1 0.25 -0.0416 0.0028 0.0004 0.0000 0 

1.05 0.18 -0.0368 0.0043 0.0003 -0.0001 0.0000 

Hexagonal arrangement 

dS /    1g  2g  3g  4g  5g  

4.0 0.96 -0.2850 -0.0365 -0.0048 -0.0006 -0.0001 

2.0 0.85 -0.2827 -0.0350 -0.0043 -0.0005 0.0000 

1.5 0.73 -0.2728 -0.0286 -0.0019 0.0002 0.0001 

1.2 0.58 -0.2433 -0.0096 0.0053 0.0021 0.0006 

1.1 0.50 -0.2216 0.0038 0.0093 0.0029 0.0004 

1.05 0.45 -0.2076 0.0116 0.0103 0.0027 -0.0003 
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(39) 

3.3.1 Numerical simulations 

Due to the lack of experimental and numerical data for parallel flow through 

ordered arrangements of fibers [15], a numerical study is performed using Fluent 

software [122] to verify the velocity distributions reported in Eq. (39). Structured grids 

are generated using Gambit [122], the preprocessor in the Fluent [122] package; 

numerical grid aspect ratios are kept in the range of 1-5. Fluent [122] is a finite volume 

based code and a second order upwind scheme is selected to discretize the governing 

equations. SIMPLE algorithm is employed for pressure-velocity coupling.  

The inlet velocity to the media is assumed to be uniform; this assumption allows 

one to study the developing length. To ensure that the fully-developed condition is 

achieved, as shown in Figure 19, very long cylinders are considered, i.e., L/d > 40; the 

fully-developed section pressure drops are used for calculating the permeability. Constant 

pressure boundary condition is applied on the computational domain outlet. The 

symmetry boundary condition is applied on the side borders of the unit cells. Grid 

independence is tested for different cases and the size of computational grids used for 

each geometry is selected such that the maximum difference in the predicted values for 

pressure gradient is less than 2%. The convergence criterion, i.e., the maximum relative 

error in the value of dependent variables between two successive iterations, is set at 10-6. 
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Figure 19: A typical numerical grid used in the numerical analysis a square arrangement with  = 
0.9. 

To verify the proposed velocity distribution for the square arrangements, 

numerical and analytical velocity profiles are plotted in Figure 20 and Figure 21 for 

square and staggered arrangements. The velocity magnitudes are nondimensionalized 

using the volume averaged velocity, DU . These figures indicate that Eq. (39) accurately 

predicts the velocity distribution in the considered geometries.  

3.3.1 Parallel permeability 

Velocity distributions are developed analytically for parallel flow through square, 

staggered, and hexagonal arrays of cylinders in previous sections. Moreover, the flow-

fields are solved numerically to verify the theoretical results. The volumetric flow rate 

that passes through the medium is found by integrating Eq. (39) over the pore area. 

Substituting for dzdP /  from Darcy’s equation and using the solid volume fraction 

definitions for square arrangement of fibers, the non-dimensional permeability is 

simplified as: 
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Figure 20: a) analytical velocity contours, Eq. (39), b) numerical velocity contours, and c) analytical 
velocity distribution for a square arrangement with  = 0.9. 
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Figure 21: Present velocity distributions for staggered arrangement of cylinders with  = 0.45 a) 
analytical, Eq. (39), and b) numerical. 
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(40) 

To verify the proposed model, the parallel permeability of square arrays, Eq. (40), 

the results of numerical simulations, experimental data of Sullivan [60] and Skartsis et al. 

[36] and the numerical results reported by Sangani and Yao [39] are plotted in Figure 22. 

Moreover, the present solution is compared with the analytical models of Happel [28], 

Drummond and Tahir [32], and Tamayol and Bahrami [121] in Figure 22. 
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Figure 22 shows that the present model is in agreement with the experimental and 

the numerical data over the entire range of porosity. The maximum difference of the 

present model with numerical and experimental data is less than 8%. 

In Figure 23, the present model for staggered fiber arrangement is compared with 

the numerical results, an experimental data reported by Sullivan [60], and the models of 

Happel [28] and Drummond and Tahir [32]. In addition, the permeability of touching 

fibers is calculated from the solution of Shit [125] for touching fibers and is included in 

Figure 23. This figure shows that the present model is accurate over the entire range of 

porosity (less than 8% deviations); especially, in lower porosities where the other models 

fail. 

 

Figure 22: Comparison of the proposed model for parallel permeability of square arrangements of 
cylinders, experimental and numerical data, and other existing models. 
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Figure 23: Comparison of the proposed model, an experimental data point (touching limit), and other 
existing models, staggered arrangement. 

The present analytical solution, present numerical results, the models of Happel 

[28] and Drummond and Tahir [32] for hexagonal arrangement are compared in Figure 

24. The proposed relationship for permeability of hexagonal arrays captures the 

numerical results within maximum difference of 9%.  

The relationships for dimensionless permeability of various arrangements, given 

in Eq. (40), are very similar to each other and the differences are in the constants and the 

higher order terms. The higher order terms become negligible for highly porous 

structures, i.e., 1 . Therefore, it is expectable that the three equations lead to almost 

identical values in this limit. As shown in Figure 25, for   > 0.85 the difference between 

the models is less than 5%; therefore, the permeability can be considered to be 

independent of microstructure. For lower porosities, on the other hand, the effect of 

higher order terms is considerable and the staggered array has the lowest permeability 
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while the hexagonal arrangement is the most permeable microstructure. This is in-line 

with our previous observations for fully-developed flow through channels with regular 

polygonal cross sections [126]. 

 

Figure 24: Comparison of the proposed model with other existing models, hexagonal arrangement. 
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Figure 25: Effect of cell arrangement on the parallel permeability of ordered arrays of fibers. 
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3.4 Blending methods for permeability of complex fibrous media  

As discussed in Section 2.1.3, blending methods have been successfully used for 

modeling the permeability of mixtures formed by various fibers with different transport 

properties. In this Section, blending methods are used to predict the in-plane permeability 

of 2D and 3D structures. 

3.4.1 In-plane permeability of GDLs (2D materials) 

There are different types of GDLs including carbon paper type, carbon fiber cloth, 

and wet-/dry-laid papers [51]. The carbon paper type is the focus of the present study. An 

SEM image of Toray carbon paper is shown in Figure 26. Gas permeability of such 

fibrous structures depends on several factors including: porosity, fibers size and 

distribution. In carbon papers, the axes of fibers are located on parallel planes with 

random distribution and orientation, see Figure 26. Therefore, the geometry shown in 

Figure 27 can be assumed as an idealized representation of the GDLs. The porosity of the 

ordered structure is related to the distance between the centers of adjacent fibers, S , and 

the fibers diameter d :  

 

Figure 26: SEM image of Toray 90 carbon paper used as GDL in PEMFCs. 
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Figure 27: Proposed periodic geometry used for modeling GDLs (2D structures). 
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(41) 

Following Jackson and James [54], carbon paper is modeled as a mixture of fibers 

parallel and normal to flow direction with solid volume fractions of par  and norm , 

respectively; for the geometry shown in Figure 27, 2/totnormpar   . It is expected 

that the equivalent permeability, )(eqK , is related to the permeability of each 

component; the concept of blending technique is shown in Figure 28.  

It should be noted that there are no concrete rules for estimating the mixtures 

permeability. Blending techniques have been successfully employed to estimate the 

permeability of fibrous mixtures such as hydrogels [54], fibers with different sizes [41], 

and fibers with different charges [55, 56]. However, to our best knowledge, the 

application of blending techniques to planar structures such as GDL is novel.  

Several blending rules, originally developed for different applications, are 

rewritten for a mixture of carbon fibers with different orientations and are listed in Table 

6. The volume-weighted resistivity scheme assumes that the two fiber categories act 

similar to flow resistors in series, while the volume weighted permeability model 
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considers each fiber category as parallel flow resistors [24]. The geometric mean scheme 

is a purely mathematical blend. To estimate the mixture permeability from using the 

equations listed in Table 6, one needs to know the permeability of the fibers in both 

normal and parallel directions. 

Flow

Parallel 
to flow 

direction

Normal 
to flow 

direction

2D structure

 

Figure 28: The blending technique concept for GDLs (2D structures). 

Table 6: A summary of various blending methods investigated for estimation of in-plane 
permeability. 
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The blending models listed in Table 6 combined with normal and parallel 

permeability presented by Eqs. (23) and (40) are used to calculate the permeability of the 

geometry shown in Figure 27. In the considered geometry, 50% of fibers are parallel and 

50% of fibers are normal to flow direction, i.e., 2/totnormpar   . The calculated 

results from different blending rules are plotted in Figure 29. It can be seen that the 

blending rules fall between normal and parallel permeability of square arrays of cylinders 

and at high porosities,   > 0.7, there is a small difference between different models. 

Our analysis showed that the volume-weighted permeability scheme is in better 

agreement with experimental data in lower porosities,   < 0.7. This blending model is 

presented in the following easy-to-use form which is a curve fit of the model:  

2
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Figure 29: Comparison of different blending models with the bounds for 2/totnormpar   . 
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This relationship is only a function of porosity and fiber diameter. The proposed blending 

model, Eq. (42), is compared with the experimental results of Gostick et al. [9] and Feser 

et al. [8] for a variety of carbon paper GDLs in Figure 30. In addition, to cover a wider 

range for the porosity of experimental data, the experimental results reported by Shi and 

Lee [70] for composite fabrication application are included. Figure 30 shows that the 

volume weighted permeability method predicts the trends of experimental data over a 

wide range of porosity. 

Most of the collected experimental data fall between the normal and parallel 

permeability of the square arrangement of fibers. Therefore, normal and parallel 

permeability of unidirectional fibers can provide upper and lower bounds for the in-plane 

gas permeability of fibrous porous media such as GDLs, respectively. In other words, the  
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Figure 30: Comparison of the proposed blending model and experimental data. 
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permeability of fibers with mixed orientations is bounded by the two limiting cases when 

all of the fibers are oriented either parallel or normal to flow direction. This is in line with 

observations of Tomadakis and Robertson [11] and Tamayol and Bahrami [121]. 

In Figure 31, the present model, Eq. (42), and the collected experimental data are 

compared against the correlations reported by Tomadakis and Sotirchos [58] and Van 

Doormaal and Pharoah [51]. The model of Tomadakis and Sotirchos (TS) [58] was based 

on the analogy between electrical and flow conductions. This model was originally 

developed for permeability of randomly distributed overlapping fibers in composite 

reinforcements [58]. It can be seen that both Eq. (42) and the model of [51] predict the 

trends of experimental data over the low to medium range of porosity. However, TS 

model [58] overpredicts the data in high porosities,   < 0.8, while Eq. (42) is in 

agreement with the experimental data over the entire range of porosity. 
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Figure 31: Comparison of present model with other existing correlations for the in-plane 
permeability of fiber mats. 
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3.4.2 In-plane permeability of 3D fibrous materials 

To further investigate the application of blending techniques for estimating 

permeability of fibrous media with complex but non-planar microstructure, a similar 

analysis has been conducted for three-directional [11] fibrous structures with random 

distribution and orientation of fibers in the space. Following Jackson and James [54], the 

complex geometry is modeled with the simple cubic (SC) arrangement shown in Figure 

32. In the SC structure, 1/3 of fibers are parallel and 2/3 of fibers are normal to flow 

direction, i.e., 3/2,3/ totnormtotpar   ; see Figure 33. The volume-weighted 

resistivity scheme is in a reasonable agreement with experimental data and can be written 

in the following compact form: 

2
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(43) 

In Figure 34, the proposed relationship, Eq. (43) is compared with experimental data of 

3D structures and the models of Tomadakis and Sotirchos [58] and Jackson and James 

[54]. It can be observed that Eq. (43) accurately captures the trends of experimental and 

numerical data. 

 

Figure 32: Proposed Simple cubic arrangement for modeling 3D (non-planar) fibrous structures. 
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Figure 33: The blending technique concept for 3D fibrous structures. 
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Figure 34: Comparison of present model with other existing correlation for 3D structures. 
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3.5 Transverse permeability of fibrous media: An scale analysis 

approach 

In this section transverse permeability of various 1D, 2D, or 3D fibrous structures 

is evaluated using a scale analysis approach. The simplest representation of 1D structures 

or generally fibrous media is the ordered arrangements of unidirectionally aligned 

cylinders. In the present study, several ordered structures including square, staggered, and 

hexagonal arrays of fibers are considered where flow is normal to the fibers axes, see 

Figure 35. 

To study woven or textile structures with non-overlapping fibers, the geometry 

shown in Figure 36 is considered where fluid flow is normal to the fibers planes. In 3D 

structures such as metalfoams, fibers can have any arbitrary orientation in space, see 

Figure 37a. Following Jackson and James [54], the microstructure of 3D fibrous materials 

is modeled by a simple cubic (SC) arrangement. Figure 37b shows a SC structure used to 

model 3D media in the present study and the transverse flow direction.  

 

Figure 35: Considered unit cells for ordered 1D structures: a) square, b) staggered, and c) hexagonal 
arrays of cylinders. 

 



 

 

70 

 

Figure 36: The 2D unit cell considered in the present study. 

Permeability should be calculated through pore-level analysis of flow in the solid 

matrix. In the creeping regime, the pore-scale velocity, V


, is governed by the continuity 

and Stokes equations: 

0.  V


 
(44) 

PV 
2 (45) 

A scale analysis is followed for determining the resulting pressure drop. In this 

approach, the scale or the range of variation of the parameters involved is substituted in 

the governing equations, i.e., derivatives are approximated with differences [127]. 

Following Clauge et al. [42] and Sobera and Kleijn [37], half of the minimum opening 

between two adjacent cylinders, min , is selected as the characteristic length scale over 

which rapid changes of velocity occurs, see Figure 35. Therefore, Eq. (45) scales as: 

V
P 

 2
min

~



  (46) 
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Figure 37: 3D structures; a) metalfoam, a real structure (scale bar is equal to 500 m ); b) simple 

cubic arrangement, modeled unit cell used in the present analysis. 

 

where   is the characteristic length scale in the flow direction, see [37] for more details. 

In case of non-touching cylinders with their axes perpendicular to the flow direction the 

maximum velocity occurs in the section with minimum frontal area. Sobera and Klein 

[37] proposed to use the average velocity in the section with minimum frontal area as the 

characteristic velocity scale, i.e., /~ DUV


; where   was the ratio of the minimum to 

the total frontal areas in the unit cell. However, this assumption was only accurate for 

highly porous structures,  > 0.8, and overpredicted the pressure drop in low porosities 

[37]. Carman [22] argued that a fluid particle should travel in a tortuous path of length 

eL  to pass through a sample of size L . Therefore, it is expected that the resulting 
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velocity scale for a constant pressure drop be inversely related to LLe / ; this ratio is 

called the tortuosity factor,  . Thus, the scale of the pore-level velocity magnitude 

becomes: 


DU

V ~


 
(47) 

Substituting from Eq. (47) for velocity scale and using min  as the length scale, 

permeability can be calculated as: 

 2
minCK 

 
(48) 

where C  is a constant that should be determined through comparison with data. 

Therefore one needs to know the ratio between the minimum to total frontal area,  , and 

the tortuosity factor,  , to be able to calculate the permeability. 

3.5.1 Tortuosity factor 

The tortuosity factor is defined as the ratio of the average distance, eL , that a 

particle should travel in a sample of size L . Due to its importance in mass, thermal and 

electrical diffusion, several theoretical and empirical relationship have been proposed for 

calculating the tortuosity in the literature; good reviews can be found elsewhere [128, 

129]. Any relationship proposed for tortuosity should satisfy three conditions [128, 129]: 

 >1;   1lim 1;   0lim . One of the most popular empirical relationships for 

determination of tortuosity, that satisfies all these conditions, is the Archie’s law [130]: 
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where   is a constant and   is the porosity.   is a 'tuning' parameter that is found 

through comparison of the Archie's empirical correlation, i.e., Eq. (49), with experimental 

data. Boudreau [125], through comparison with data, showed that   = 0.5 provides a 

reasonable estimate for tortuosity in packed beds. The axes of fibers in 1D and 2D micro-

structures are perpendicular to the transverse flow direction which is similar to the flow 

through packed beds of spherical particles. As a result,   = 0.5 provides a good estimate 

for the tortuosity of 1D and 2D structures as well. However; in 3D structures, some of the 

fibers (roughly 1/3, consider an equally-spaced equally-sized cubic unit cell) are parallel 

to the flow direction and do not affect the tortuosity of the medium. The study of 

Tomadakis and Sotirchos [58] also showed that 3D fibrous structures are less tortuous in 

comparison with 1D and 2D matrices. Consequently, an   smaller than 0.5 should be 

used for 3D microstructures. The deviation of Archie’s law with   = 0.3 from the 

tortuosity values predicted by the model of Tomadakis and Sotirchos [58] is less than 

20%. In the present study, our model for permeability of 3D structures (  = 0.3) captures 

the trends of the present experimental results and the data collected from various sources. 

3.5.2 Experimental study 

Experimental data for creeping flow through fibrous structures that we are 

interested in is not abundant in the open literature. As such, several samples of tube banks 

with 1D square and staggered fiber arrangements and metalfoams with 3D 

microstructures shown in Figure 38 are tested using glycerol. To fabricate the tube bank 
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sample, Polymethyl methacrylate (PMMA) sheets of 3 mm  thickness were cut and 

drilled using a laser cutter with the accuracy of 0.05 mm . Glass capillary tubes with 

diameter of 1.5 mm  were inserted and fixed using an adhesive tape to form tube banks, 

as shown in Figure 38. The length of the tube banks were selected such that a minimum 

of 15 rows of cylinders existed in the flow direction for each sample. Aluminum 6101 

metalfoam samples were purchased from ERG Duocel (Oakland, CA) with a number of 

pores per inch (PPI) in the range of 10 to 40. The porosity of the samples was also 

calculated independently by weighting the samples and measuring their volumes. In this 

case, the density of the fibers was reported by manufacturer as 2690 kg/m3 and the solid 

volume fraction was calculated as )volume2690/(mass  . The fiber diameters were 

estimated using SEM images and also compared with the data reported by others [131] 

for similar materials. The properties of the samples are summarized in Table 7. 

A custom-made gravity driven test bed, illustrated in Figure 38, was built that 

included an elevated reservoir, an entry section, sample holder section, and an exit 

section with a ball valve. The reservoir cross-section of 300300 mm2 was large enough 

to ensure that the variation of the pressure head was negligible during the experiment. 

The pressure drop across the samples was measured using a differential pressure 

transducer, PX-154 (BEC Controls) with 1% accuracy. To minimize entrance and exit 

effects on the pressure drop measurements, pressure taps were located few rows apart (at 

least three rows) from the first and the last tube rows in the tube bank samples and 1 cm  

apart from the sample edge for metalfoams. Glycerol was used as the testing fluid and the 

bulk flow was calculated by weighting the collected test fluid over a period of time.  
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The Reynolds number was defined based on fibers diameter, i.e., 

 /Re dU D , and was kept below 0.001 to ensure creeping flow regime in the tested 

media. As such, the permeability of the samples was calculated using the Darcy equation, 

Eq. (1).  

Assuming Darcy’s law in a porous structure implies a linear relationship between 

the pressure drop and the fluid velocity in the media. This linear relationship can be 

observed in Figure 39 for tube banks with square and staggered fiber arrangements and 

metalfoam samples. 

 

Table 7: The properties of the tested samples. 

Sample type   d ( mm ) )(mmL  Orientation 

Measured 
permeability, 

K , (
2m ) 

Tube bank (square) 0.8 1.5 59 1D 1.38×10-7 

Tube bank (square) 0.85 1.5 68 1D 3.74×10-7 

Tube bank (square) 0.9 1.5 80 1D 5.44×10-7 

Tube bank (staggered) 0.7 1.5 74 1D 1.00×10-7 

Tube bank (staggered) 0.9 1.5 72 1D 7.75×10-7 

Metalfoam (PPI=10) 0.93 0.4 137 3D 2.53×10-7 

Metalfoam (PPI=20) 0.93 0.3 135 3D 1.45×10-7 

Metalfoam (PPI=40) 0.94 0.2 120 3D 0.81×10-7 
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3.5.3 Results and discussion 

Equation (48) relates the permeability of fibrous media to the minimum opening between 

adjacent fibers, min , the ratio between minimum to total frontal area,  , and tortuosity 

factor,  , that can be calculated from Eq. (49). In the following subsections, using 

geometrical properties of the considered microstructures, compact models will be 

developed that relate the permeability to the solid volume fraction. 

3.5.3.1 Unidirectionally Aligned Arrangements 

For the three different ordered 1D unit cells shown in Figure 35, it can be seen 

that SdS /)(   and 2/)(min dS  . Therefore, Eq. (48) can be rewritten as: 

 





1

3

S

dS
CK

 
(50) 

Combining Eqs. (28) and (50), the dimensionless permeability of the ordered 

structures becomes: 
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(51) 
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Figure 38: The gravity driven test bed and the tested samples: a) actual test setup, b) schematic, c) a 
sample of tube banks, and d) a sample of aluminum foam. 

The constant values in Eq. (51) are evaluated through comparison of the proposed model 

with the experimental and numerical data found in the literature. In Figure 40, Eq. (51) is 

compared with the present experimental results and the data collected by others. As one 

can see, the model is in agreement with experimental data over the entire range of 

porosity. These experiments were conducted using different fluids including: air, water, 

oil, and glycerol with a variety of porous materials.  
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Figure 39: measured pressure gradients for samples of a) tube bank with square fiber arrangement, 
b) tube bank with staggered fiber arrays, and c) metalfoams. 
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In Figure 41, the predicted results of Eq. (51) for staggered arrangement of fibers 

are compared with present experimental data and numerical results of Higdon and Ford 

[40]. It can be seen that the proposed model can accurately predict the numerical results 

in the entire range of porosity. The average relative differences between the numerical 

and experimental data with the values predicted by various models for 1D structures are 

reported in Table 8. 
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Figure 40 : Comparison of the proposed model for square arrangements with experimental data 
measured in the present study or reported by others. 
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Figure 41: Comparison of the proposed model and current experimental data with numerical results 
of Higdon and Ford [40] for staggered arrangements. 

3.5.3.2 Two-directional structures 

The ratio of the minimum frontal to the total unit cell areas for the 2D structure, 

shown in Figure 36, is not exactly known. Therefore, using the Forchheimer law that 

estimates the average pore-scale velocity as /DU  [1], the magnitude of the pore-level 

velocity scale is estimated as:  


DU

V 


 
(52) 

The length scale, where the rapid changes of the velocity occurs, is assumed as 

2/)(min dS  . Therefore, the permeability reads: 

 

 

d

Flow
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Table 8: The average relative difference between the permeability values predicted by different 
models with the numerical and experimental data for 1D square, 1D staggered, and 3D simple cubic 

structures over the entire range of porosity.1 

1D square arrays 
(compared to experimental data) 

Author(s) 
Relative 

difference 
(%) 

Author(s) 
Relative 

difference (%) 

Equation (23) 24.9 Happel (1959) 47.5 

Gebart (1992) 26.8 Drummond and Tahir (1984) 245.2 

Van der Westhuizen (1996) 45.8 Equation (51) 15.8 

Sahraoui and Kaviany (1994) 25.6 
 

1D staggered arrays 
(compared to present experimental data and numerical results of Higdon and Ford [40]) 

Author(s) 
Relative 

difference 
(%) 

Author(s) 
Relative 

difference (%) 

Gebart (1992) 11.6 Equation (51) 26.6 

Happel (1959) 38.8 
 

3D simple cubic structure 
(Compared to numerical results of Higdon and Ford [40]) 

Author(s) 
Relative 

difference 
(%) 

Author(s) 
Relative 

difference (%) 

Tomadakis and Robertson 
(2005) 

24.9 Equation (55) 19.3 

Jackson and James (1986) 247.3 
 

1 Relative difference = /modeldatamodel   

  2dSCK 
 

(53) 

Substituting for geometrical parameters from Eq. (41) and the tortuosity from Archie’s 

law, the dimensionless permeability becomes: 
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(54) 

The constant value in Eq. (54), i.e., 0.008, is found through comparison with 

experimental data collected from different sources, see Figure 42. It can be seen that Eq. 

(54) captures the trend of the experimental data collected from different sources over a 

wide range of porosity. The experiments were conducted on glass rods, glass wool, cotton 

wool, kapok with application in filtration [62], alloy fibers [64], fiber reinforcing mats 

with application in molding and composite fabrication [48, 132], and gas diffusion layers 

[9]. Kostornov and Shevchuk [64] performed experiments with several fluids and they 

observed that permeability was dependent on the working fluid, i.e., water resulted in 

higher permeability than alcohol. Models of Tomadakis and Robertson [11] and Van 

Doormaal and Pharoah [51] are also compared with Eq. (54) in Figure 42. For highly 

porous materials (  > 0.8) the correlation proposed by Van Doormaal and Pharoah [51] 

also accurately predict the experimental data while the model of Tomadakis and 

Robertson [11] captures the trends of experimental data in lower porosities. 

3.5.3.1 Three-directional structures 

For simple cubic arrangement that is considered in this study as a simple 

representation of 3D fibrous materials, the ratio of the minimum frontal to the unit cell 

areas is 22 /)( SdS   and 2/)(min dS  . Therefore, the permeability of 3D 

structures becomes: 
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Figure 42: Comparison of the present model, models of Van Doormaal and Pharoah [51] and 

Tomadakis and Robertson [11] with experimental data for transverse permeability of 2D structures. 
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where the relationship between geometrical parameters of SC structure is: 
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(56) 

The constant in Eq. (55) is found to be 0.08 through comparison of this equation 

with the numerical data reported by Higdon and Ford [40] for SC arrangements over a 

wide range of porosity. Figure 43 includes the present model, models of Tomadakis and 

Robertson [11] and Jackson and James [54], current experimental measurements, and 

experimental data collected from different sources. The plotted data are based on the 

permeability values reported for polymer chain in solutions [65], glass wool randomly  
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Figure 43: Comparison of the proposed model for 3D structures, models of Jackson and James [54] 
and Tomadakis and Robertson [11], present experimental results and data reported by others. 

packed, stainless steel crimps [22], metallic fibers [69], and aluminum metalfoams [94]. 

It can be seen that the present model is in agreement with the experimental data and 

numerical results collected from a number of studies over the entire range of porosity. 

The average relative differences between the numerical data reported by Higdon and Ford 

[40] and Eq. (55), the model of Tomadakis and Robertson [11], and the model of Jackson 

and James [54] are listed in Table 8. 

3.6 Through-plane permeability of carbon papers 

Through-plane permeability of uncompressed carbon papers with no PTFE 

treatment can be estimated using the existing models for the permeability of planar 

fibrous structures. Based on the analogy between electrical and flow conductions, 

Tomadakis and Robertson [11] developed a model for permeability of randomly 
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distributed overlapping fibers in composite reinforcements. The scale analysis method 

and the developed model for 2D fibrous structures, Eq. (54), can also be applied to 

carbon papers. However, in an actual case, GDL is treated with PTFE and is compressed 

to manage the water transport and to seal the cell, respectively.  

Since the model of [11] and Eq. (54) do not include the effect of PTFE content 

and mechanical compression on the through-plane permeability, there is a need for 

developing a general model that can accurately predict the through-plane permeability of 

GDLs as a function of compression ratio and PTFE content. In addition, more 

experimental investigations are required to find effects of mechanical compression and 

PTFE content on the through-plane permeability of GDLS. 

3.6.1 Experimental Approach 

3.6.1.1 Tested samples 

The tested GDLs were purchased as Teflon treated carbon papers from Toray and 

Sigracet SGL. As a result of their similar production procedure, despite the different 

thicknesses, TGP-H-90 and 120 have similar microstructures. TGP-H-120 was obtained 

with 0, 5, 20, and 30% PTFE content while the tested TGP-H-90 have a 0% PTFE 

content. Figure 44a shows a SEM image of TGP-H-120 with 5% PTFE content. The SGL 

Sigracet 10AA, shown in Figure 44b, was obtained with 0% PTFE content.  

The porosity of the samples which had been reported by manufacturer and 

Gostick et el. [9] were used in the present study. Fiber diameter was reported by  
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Table 9: Physical properties of different carbon papers used in the present study: porosity and PTFE 

content provided by the manufacturers; the measured thicknesses and fiber diameters. 

GDL 
Thickness 
( m ) Porosity* 

Fiber diameter 
( m ) 

PTFE 
content (%) 

SGL-Sigracet 
10AA 

390-410 0.88  9.2 0 

TGP-H-90 255-270 0.79  9.3 0 

TGP-H-120 370-385 0.79  9.3 0-30 

*The porosity is reported for GDLs with 0% PTFE content. 

Gostick et al. [9] and was also independently calculated using scanning electron 

microscopy (SEM) images. The thickness of the samples was measured using a 

micrometer; the maximum uncertainty associated with the measurements is less than 

10 m . The properties of the purchased samples are listed in Table 9.  

3.6.1.2 Test apparatus 

An air permeability test bed was designed and built for measuring the through-

plane permeability, see Figure 45. The high pressure air was supplied by a high pressure 

air tank and controlled using a digital air pressure regulator; the output pressure of the air 

regulator valve was set to 6 psi during all experiments. Two aluminum blocks were 

machined and drilled with a 25mm diameter hole. The blocks were used as sample 

holders and the GDL samples were sandwiched between the blocks. An O-ring was used 

between the two aluminum blocks to prevent air leakage from the test section.  
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Figure 44: SEM Images: a) TGP 120 with 5% PTFE content; b) SGL Sigracet 10AA; c) compressed 
TGP 120 with 5% PTFE content. 

The up and down stream air flow were connected to a differential pressure 

transducer, PX277-01D5V, supplied by Omega (Omega Inc., Laval, QC, Canada). The 

pressure transducer was connected to a PC, using a DAQ purchased from Omega (Omega 

Inc., Laval, QC, Canada), where the pressure drop values were recorded. The accuracy of 

the pressure transducer was 1% of its full scale measuring range (0-1 inch of water). The 

air flow rate passing through the GDLs was measured using a flow meter provided by 

Omega (Omega Inc., Laval, QC, Canada). The accuracy and the range of the air flow 

meter was 3% and 0-10 lpm, respectively. 
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The carbon papers were cut into circular samples of 3 cm diameter for the 

experiments. To investigate the compression effects, GDL samples were compressed 

using a GUNT WP 300 Universal Material Tester for 15 min; the maximum applied 

compressive force was less than 20 kN. The thickness of the compressed samples was 

measured after the load was released to determine the variation in its thickness, using the 

same micrometer. 

3.6.1.3 Data analysis 

Gas permeability, K, is defined using Darcy equation:  

DU
Kt

P 





 
(57) 

where DU  is the volume averaged velocity through porous media,   is viscosity, P  is 

the pressure drop across the sample, and t  is the GDLs thickness. Darcy equation is valid 

for incompressible, steady, constant properties, single-phase (no-surface tension forces), 

and low Reynolds number flows.  

The Reynolds number based on the fiber diameter,  /Re dUD , was lower 

than 0.1 in the present study; therefore, the Darcy equation was applicable for analyzing 

the experimental results. The maximum measured pressure drop across the samples was 

less than 200 Pa. As such, it was assumed that the compressibility effects for such small 

values of pressure drop can be negligible and the Darcy equation in the form of Eq. (57) 

was applicable in the present study. DU  was calculated by dividing the volumetric flow 

rate by the sample cross-sectional area. 
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Figure 45: The air permeability test bed: a) schematic of the apparatus (exploded view) b) actual test 
setup. 

Assuming Darcy’s law in a porous structure implies a linear relationship between 

the pressure drop and the fluid velocity in the media. As an example, this linear 
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relationship can be observed in the experimental results for samples of compressed TGP-

H-120 in Figure 46 which justifies Darcy’s assumptions. 

The measured values of pressure drop, totalP , during the experiments were:  

minsampletotal PPP 
 

(58) 

where sampleP  is the pressure drop associated with the sample and minP  is the 

pressure drop due to minor losses in the testbed, i.e., exit and entrance section of the 

sample holder. To account for the minor pressure losses, the pressure drop in the test 

section was measured once without any GDL samples to determine minP  for the entire 

range of flow rate considered in the present experimental work.  
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Figure 46: Measured pressure drops for samples of compressed TGP-H-120. 
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The uncertainty associated with the through-plane permeability, calculated based 

on the measured variables using the Darcy’s equation, can be estimated from[133]: 
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(59) 

where (.)E  is the uncertainty in the measurement of each parameter; these values are 

listed in Table 10. The maximum uncertainty in the calculated values of permeability is 

estimated to be 9%. 

3.6.2 Theoretical Model 

Our scale analysis model, Eq. (54) was successfully compared with experimental 

data collected from various sources. The tortuosity factor used in derivation of Eq. (54) is 

based on the Bruggeman equation [134]. Hao and Cheng [49] numerically calculated the 

tortuosity factor for carbon papers and proposed the following correlation: 

  54.011.0
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(60) 

Table 10: Uncertainty values for measured parameters 

Parameter Uncertainty 
  10 m  

P  1% of full scale 

DU  3% of full scale 

  5% 

K  9% 
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Our analysis showed that if the constant value in Eq. (54) is replaced by 0.012 and 

  is calculated from Eq. (60) the resulting equation: 
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(61) 

can predict the experimental data for GDLs more accurately. To enable Eq. (61) to 

include the effects of compression factor and PTFE content, the relationship between 

these properties and the solid volume fraction should be determined.  

Figure 44c shows that mechanical compression does not change the shape of 

fibers. It can be assumed that during the compression process only the thickness of the 

original fibrous samples changes while the volume of the solid carbon fiber remains 

constant. Therefore, the relationship between the solid volume fraction, comp , of a 

compressed sample with the original value for an uncompressed carbon paper, 0 , can be 

expressed as [49]: 

comp
comp t

t0
0 

 
(62) 

where compt  and 0t  are the compressed and uncompressed GDL thicknesses, 

respectively. If the PTFE is added on the carbon paper GDL, the pore volume is 

randomly filled by the PTFE. It is postulated that PTFE changes the porosity and some 

pores in the medium are filled. The final porosity, PTFE , can be expressed 

approximately as a function of PTFE content   [49]: 
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where 0  is the original porosity before PTFE treatment. Hao and Cheng [49] suggested 

a = 0.9 as the density ratio of the carbon fiber and the PTFE [76]. Employing Eqs. (62) 

and (63), one can predict effects of PTFE and compression on the permeability on the 

through-plane permeability of GDLs from the scale analysis technique. 

3.6.3 Comparison of experimental and theoretical results 

The permeability of various tested samples is calculated using Darcy’s law, Eq. 

(57). The porosity of the compressed samples and GDLs treated with PTFE are calculated 

using Eq. (62) and (63), respectively.  

The effect of mechanical compression and variation of GDL thickness on the 

permeability is shown in Figure 47. It can be seen that there is a linear relationships 

between the ratio of compressed to uncompressed permeability of the measured GDLs 

and the compression ratio, 0/ ttcomp . The experimental data for the through-plane 

permeability of compressed GDLs, from the present study or reported by others, are 

plotted in Figure 48 and compared with the present model, Eq. (61). The comparison of 

experimental data with the modified TB model shows that proposed model, Eq. (61), 

captures the trends of experimental data for compressed GDLs. The through-plane 

permeability of uncompressed TGP-H-90 was measured as 8.710-8 m2 which is in good 

agreement with the value of 8.9910-8 m2 reported by Gostick et al. [9].  
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Figure 47: Effect of compression ratio, 0/ ttcomp on the variation of permeability. 
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Figure 48: Comparison of the proposed model with the experimental data for compressed GDLs 

measured in the present study or collected from various sources. 
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The effect of PTFE content on the through-plane permeability of GDLs is 

presented in Figure 49. It can be seen that a reverse relationship exist between the PTFE 

content and the through-plane permeability. The experimental data for TGP-H-120 with 

various PTFE contents are plotted in Figure 50 and compared with TB model. Porosities 

of the samples are estimated from Eq. (63). The permeability of the PTFE treated GDLs 

has a reverse relationship with the PTFE content. It can be seen that Eq. (61) predicts the 

reverse relationship between permeability and PTFE contents; this is in agreement with 

the experimental data. Overall, it can be concluded that the modified TB model can be 

used in design and optimization process of PEMFCs. 
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Figure 49: Effect of PTFE content on the through-plane permeability of two set of TGP-H-120 
samples with various PTFE contents. 
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Figure 50: Comparison of the proposed model with the experimental data for TGP-H-120 with 
various PTFE contents. 

3.7 Effect of microstructure on the flow properties of fibrous media 

Our literature review revealed that no comprehensive studies exists in the literature on the 

effects of microstructure, especially fiber orientation, on the flow properties of fibrous 

materials in low to moderate range of Reynolds numbers. In addition, very few 

experimental works have been published for the flow through ordered fibers with 

moderate Reynolds numbers. In this study, the effects of porosity and fiber orientation on 

the flow coefficients of mono-dispersed fibrous materials are investigated. Parallel and 

transverse flow through a variety of fibrous matrices including square fiber arrangements, 

simple two directional mats, and simple cubic structures, shown in Figure 36 and Figure 

37, are solved numerically over the porosity range of 0.4 <   < 0.95 and Reynolds 

number range of 0.01 < Re < 200. The results are then used to find permeability and the 

inertial coefficient of the solid matrices. To verify the present numerical results, pressure 
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drop through three different tube banks with porosity range of 0.8 <   < 0.9 are tested 

using various water-glycerol mixtures to determine the flow coefficients. 

If the pore sizes are much larger than the molecular mean free path, flow in pore 

scale is governed by Navier-Stokes equation; that is the continuum flow hypothesis 

which is considered here. Assuming incompressible, steady state flow, the microscopic 

equations become [118]: 

0.  V


 
(64) 

VPVV
 2.  

 
(65) 

where V


 is the pore scale velocity vector,   and   are the fluid density and viscosity, 

respectively. Eqs. (64) and (65) are subject to no-slip boundary condition at the fibers’ 

surface. After volume averaging, Eq. (65) leads to Eq. (2) and in the creeping flow limit, 

reduces to Eq. (1). Equation (2) is usually written in the following form [1]: 
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(66) 

where F is a dimensionless number called the Forchheimer coefficient. A special form of 

Eq. (66) is the Ergun equation: 
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(67) 

where  223 1150/   dK  and 2/3/14.0 F . Ergun equation is based on a curve fit 

of experimental data collected for granular materials [1]. 
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3.7.1 Experimental approach 

Experimental data for moderate Reynolds number flow through the fibrous 

structures that are of our interest is not abundant in the open literature. Three samples of 

tube banks with 1D square arrangement shown in Figure 38 were tested. To fabricate the 

tube bank sample, Polymethyl methacrylate (PMMA) sheets of 3 mm  thickness were cut 

and drilled using a laser cutter with the accuracy of 0.05 mm . Glass capillary tubes with 

diameter of 1.5 mm  were inserted and fixed using an adhesive tape to form the tube 

banks, as shown in Figure 38. The length of the tube banks were selected such that a 

minimum of 15 rows of cylinders existed in the flow direction for each sample. The 

properties of the samples are summarized in Table 7. 

A custom-made gravity driven test bed, illustrated in Figure 38, was built that 

included an elevated reservoir, an entry section, a sample holder section, and an exit 

section with a ball valve. The liquid level was kept constant during the experiment to 

ensure that the variation of the pressure head was negligible during the experiment. The 

pressure drop across the samples was measured using a differential pressure transducer, 

PX-154 (BEC Controls). To minimize entrance and exit effects on the pressure drop 

measurements, pressure taps were located few rows apart (at least three rows) from the 

first and the last tube rows in the tube bank samples. Several water-glycerol mixtures 

with different mass concentrations and viscosities (0.015-1.4 Ns/m2) were used to change 

the flow Reynolds number from 0.001 to 15. The bulk flow was calculated by weighting 

the collected test fluid over a period of time. The maximum uncertainty in the flow rate 

measurements was 4%. 
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To obtain the permeability and the inertial coefficient from the measured pressure 

drop  dxdp /  and mass flow rate values, the volume averaged superficial velocity, DU , 

was calculated from the mass flow rate data and then   DUdxdp //  was plotted versus 

 /DU . The y-intercept and the slope of the data were then K/1  and KF / , 

respectively; see Eq. (66). Using Eq. (2), the inertial coefficient was then calculated. 

From Figure 51, it can be seen that the measured pressure drops present a parabolic 

relationship with the volume-averaged velocity. 

The uncertainty associated with the permeability and inertial coefficient, 

calculated based on the measured variables, can be estimated as: 
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where: 
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(.)E  is the uncertainty in measurement of each parameter; these values are listed in Table 

11. The maximum uncertainty in the experimental values of permeability and inertial 

coefficient is estimated to be 12%. 
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Figure 51: Measured values of  dxdpUD //1   for the samples of tube bank with square fiber 

arrangement. 

Table 11: Uncertainty in the measured parameters. 

Parameter Uncertainty 
  3% 

LP /  1% of full scale 

Q  4% of full scale 

DU  4% 

K  12% 

  12% 

3.7.2 Numerical procedure 

Equations (64) and (65) are solved using Fluent [122] which is a finite volume 

based software. The second order upwind scheme is selected to discretize the governing 

equations and SIMPLE algorithm [123] is employed for pressure-velocity coupling. The 

inlet and outlet boundaries of the computational domains are considered to be periodic, 
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i.e., the velocity distributions on both boundaries are the same [122]. The symmetry 

boundary condition is applied on the side borders of the considered unit cells; this means 

that normal velocity and gradient of parallel component of the velocity on the side 

borders are zero. However, for three dimensional cases, employing the periodic condition 

leads to a poor convergence rate. As a result of our limited computational resources, in 

some cases, a set of 7-10 unit cells in series are considered and velocity profiles are 

compared at the entrance to each unit cell. For these cases, the inlet velocity of the media 

is assumed to be uniform. Constant pressure boundary condition is applied on the 

computational domain outlet. The pressure drops used for calculation of flow properties 

are only the values obtained from the developed regions. 

Structured grids and unstructured grids are generated for 1D/2D and 3D networks, 

respectively, using Gambit [122], the pre-processor in Fluent software. Numerical grid 

aspect ratios are kept in the range of 1-7. Grid independence is tested for different cases 

and the size of the computational grids used for each geometry is selected such that the 

maximum difference in the predicted values for pressure gradient is less than 2%. The 

maximum number of grids used for 1D and 2D/3D structures are approximately 14k and 

1,400k, respectively. It should be noted that the convergence criterion, maximum relative 

error in the value of dependent variables between two successive iterations, is set at 10-6. 

In this part, numerical simulations are carried out for fibrous networks in the 

porosity range of 0.3 - 0.95 and in the Reynolds number range of 0.001 – 200. SC 

arrangements are orthotropic while the rest of the considered structures are anisotropic 

[11]. Therefore, numerical simulations are conducted for flow parallel to different 

coordinate axes. The same method as described in the previous section is employed to 
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determine the permeability and the inertial/Forchheimer coefficient from numerical 

results for different unit cells. The summary of the computed flow coefficients are 

reported in Table 12. 

Flow parallel to axes of square arrays of cylinders is similar to laminar channel 

flows. This leads to zero value for Forchheimer coefficient in parallel flow as reported in 

Table 12. Similarly, for 2D structures, the in-plane Forchheimer coefficients have lower 

values than the calculated values for through-plane flow. This is resulted from the fact 

that 50% of the fibers in the considered geometry are parallel to the flow direction. 

Therefore, no inertial drag forces are exerted on these fibers. 

3.7.3 Comparison of the numerical results with existing data in the literature 

3.7.3.1 Square arrangement (1D)  

To validate the numerical analysis, the calculated values of the dimensionless 

normal permeability, 2/ dK , are successfully compared with present experimental results 

and the data collected from several sources in Figure 52. Moreover, in Figure 53, the 

calculated Forchheimer coefficients for square arrangements are compared with the 

present experimental data, the numerical results of Ghaddar [84] and Papathanasiou et al. 

[85] for monodisperse and bimodal fiber arrays, respectively. In addition, the 

experimental data of Bergelin et al. [61] (oil flowing across tube banks) are included in 

Figure 53. In general, the present results are in good agreement with the collected and 

reported data by others. 
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Table 12: Flow properties for the considered fibrous structures. 

Square array (1D) 

Normal flow Parallel flow 

  2/ dK  F    2/ dK  F  

0.45 0.0015 0.13 0.45 0.0079 0 

0.65 0.014 0.026 0.55 0.0177 0 

0.8 0.072 0.018 0.65 0.0378 0 

0.9 0.300 0.011 0.8 0.1667 0 

0.95 0.892 0.009 0.9 0.643 0 

Planar structures (2D) 

Through plane flow In-plane flow 

  2/ dK  F    2/ dK  F  

0.35 0.0007 0.313 0.35 0.0016 0.092 

0.5 0.0046 0.118 0.5 0.0069 0.046 

0.6 0.012 0.091 0.6 0.0164 0.033 

0.8 0.106 0.033 0.8 0.0807 0.018 

0.9 0.439 0.0028 0.9 0.4119 0.013 

Simple cubic (3D) 

  2/ dK  F  

0.31 0.0011 0.914 

0.37 0.0023 0.562 

0.59 0.0174 0.141 

0.79 0.118 0.041 

0.87 0.336 0.024 
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Figure 52: Comparison between the present numerical results, collected experimental results, and 
data from various sources, for normal flow through square fiber arrays. 
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Figure 53: Comparison between the present numerical and experimental results for Forchheimer 
coefficient with experimental and numerical data of others. 
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3.7.3.2 2D and 3D simple cubic structures 

There is no experimental data for moderate Reynolds number flows through the 

ordered 2D and 3D structures considered in the present study. To validate the analysis, 

the calculated permeability values for simple cubic arrangement are compared with the 

numerical results of Higdon and Ford [40] and experimental data for actual 3D materials 

with random fiber distribution collected from different sources in Figure 54. The plotted 

data are based on permeability results for polymer chain in solutions [65], glass wool 

randomly packed, stainless steel crimps [22], metallic fibers [69], and aluminum metal 

foams [94, 135]. 

3.7.4 Effects of microstructure on flow properties 

Effects of microstructure and more specifically fibers orientation on permeability 

and Forchheimer coefficient are investigated in Figure 55 and Figure 56, respectively. As 

expected, 1D arrangements are the most anisotropic geometry and the normal and parallel 

permeability of such structures provide the lower and upper bounds for permeability of 

fibrous media. Effects of microstructure are more pronounced in lower porosities. 

The plotted data in Figure 56 indicates that 1D and 2D geometries are anisotropic 

and the Forchheimer coefficient for 3D structures is higher than values for 1D and 2D 

geometries. The Forchheimer coefficient is a measure of inertial effects. Thus, it is more 

influenced by microstructure in the porosity range of   < 0.7. 
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Figure 54: Comparison between the present numerical results for permeability of simple cubic 
arrangements with existing numerical and experimental data of 3D materials. 
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Figure 55: Comparison of numerical values of dimensionless permeability of fibrous media with 
Ergun equation. 
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Figure 56: Comparison of numerical values of Forchheimer coefficient of fibrous media with Ergun 
equation. 

Ergun equation, Eq. (67), is a widely accepted equation for prediction of pressure 

drop across granular materials. However; there are two main differences between fibrous 

and granular materials are: 

 Shape of the particles in granular materials is spherical while fibrous 

media are made up of cylindrical like particles. 

 Porosity of granular materials are in the range of 0.2 – 0.6, while the 

porosity of fibrous materials usually is in the range of 0.6 - 0.999. 

The present numerical results are compared with the values predicted by the 

Ergun equation to investigate the accuracy of this equation for high porosity fibrous 

structures. Figure 55 includes the predicted values of permeability from Ergun equation 

and the present numerical results. It can be seen that the Ergun equation can only predict 

trends of numerical data qualitatively and the differences are significant especially in low 
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porosities. The Forchheimer results calculated from the Ergun equation are plotted 

against the current numerical results in Figure 56. The comparison shows that the Ergun 

equation is only in agreement with numerical results for 3D materials with low porosities. 

For higher porosities Eq. (67) is incapable of predicting the pressure drop for fibrous 

media. 

Creeping flow through fibrous media has been investigated in the previous 

subsections and accurate models have been proposed for calculating the permeability. 

However, no compact relationships exist for estimating the Forchheimer coefficient of 

various fibrous structures. Using our numerical results, a series of compact correlations 

are developed for 1D, 2D, and 3D fibrous structures and are listed in Table 13. The 

proposed correlations are accurate within 2% of the present numerical results. 

Table 13: Proposed compact correlations for Forchheimer coefficient in fibrous media. 

Flow direction/microstructure 
  cbaF /1   

a b c 

Normal/square arrays (1D) -5.32 18.42 0.532 

Through plane- 2D structures -0.14 5.05 0.418 

In-plane/2D structures 1.037 0.0863 0.025 

Simple cubic arrangements (3D) 0.534 1.56 0.184 
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4: MACROSCOPIC FLOW IN CONFINED POROUS 
MEDIA 

In some applications, the porous material is confined by solid walls, e.g., 

mini/microchannels filled with porous media (micro-porous channels), or the flow inside 

the porous media is boundary driven. In such applications, flow and pressure distribution 

in the porous media cannot be described by the Darcy’s law. In the present thesis, flow in 

channels fully and partially filled channels is investigated. 

4.1 Pressure drop in microchannels filled with porous media 

The porous medium is represented by several square arrangements of cylinders. 

The micro-porous channel, shown in Figure 57, consists of repeating square arrangements 

of mono disperse cylinders, embedded in a rectangular microchannel of depth h. In the 

creeping flow regime, the volume-averaged velocity distribution is given by Brinkman 

equation [19]: 

2

2

dy

Ud
U

Kdx

dP D
effD 


 

(71) 

where eff  is called the effective viscosity. Previous studies have shown that the 

viscosity ratio eff /' , varies between 1 to 10 [136]. Some researchers has 

postulated that ' 1; see for example [137]. According to [137], this assumption is 
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reasonable for highly porous materials. However, Ochoa-Tapia and Whitaker [116] have 

shown that  /1'  is a more suitable estimation.  

The last term in the right hand side of Eq. (71) has been originally added to the Darcy 

equation to allow considering the no-slip boundary condition on solid walls. In the 

limiting case where either there is no porous medium inside the channel or the boundary 

effects are dominant, Darcy term, the first term in the right hand side of Eq. (71), 

vanishes and this equation becomes identical to Navier-Stokes (NS) equation. On the 

other hand, in the limit of very dense porous media, the Darcy term becomes dominant 

and Eq. (71) reduces to Eq. (1). 

Hooman and Merrikh [138] developed analytical solutions for flow and pressure drop 

inside large scale rectangular channels filled with porous media: 
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(a) 

 

(b) 

Figure 57: Structure of the considered micro-porous channels a) the schematic, b) a fabricated 
sample. 
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and h , L  and W  are the depth, length, and width of the porous channel, respectively. 

They also assumed that 1' . The cross-sectional aspect ratio, Wh /  , in the 

samples tested in the present study is smaller than 0.1. Therefore, instead of considering 

the whole rectangular cross-section, the sample can be envisioned as a porous medium 

sandwiched between two parallel plates as shown in Figure 58. The solution of Eq. (71), 

the volume averaged velocity distribution, for 2D flow between parallel plates subject to 

no-slip boundary condition on the channel walls becomes: 
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Consequently, the pressure drop for the simplified geometry becomes:  
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(75) 

To determine the pressure drop from Eq. (75), one needs to calculate the 

permeability of the fibers arrangement in normal directions from the model developed in 

Section 4.2, Eq. (51). 
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Figure 58: Schematic of the simplified 2D geometry. 

4.2 Experimental procedure 

4.2.1 Microfabrication 

4.2.1.1 Soft lithography 

Five different PDMS/PDMS samples were fabricated using the soft lithography 

technique [139] described by Erickson et al. [140]. A schematic of the process is 

provided in Figure 59. The fabrication process has two main parts: 1) preparing the mold; 

2) making the PDMS replica. 

SU-8 was used for preparing the molds; SU-8 is a negative tone epoxy-based 

photoresist that can be photo patterned using deep UV light. SU-8-100 was chosen for 

micromold fabrication as it can be patterned in very thick films (up to 1mm thick) and 

can make an excellent mold for PDMS. Square glass slides of 75 x 75 mm and 1 mm thick 

were used as substrates which were first cleaned in 100% Micro 90 Detergent (purchased 

from International Products Corporation, USA) using ultrasonic agitation for 5 minutes 

and then rinsed with de-ionized (DI) water, acetone, isopropyl alcohol (IPA) and DI 

water. Substrates were blow dried using nitrogen followed by dehydration baking for 20 

minutes at 120 °C in a convection oven and cooling to room temperature. A 25 nm thick 

chrome layer was sputtered on each glass substrate which acts as an adhesion promoter 

x 
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U(h) = 0 

U(0) = 0 
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for the SU-8 100. A 100 m  thick layer of SU-8 100 was spin coated (at 2250 RPM) on 

top of the adhesion layer of each substrate, followed by soft baking at 90 °C for 80 

minutes and cooling to room temperature. Structures were patterned using 

photolithographic UV exposure through a photomask for 60 seconds. Full crosslinking of 

the SU-8 100 was achieved by a post-exposure bake at a temperature of 60°C for 65 

minutes (ramp rate: 300 °C/hr) followed by cooling to room temperature. The structural 

layer on each substrate was then developed in SU-8 Developer (Microchem™) for 90 

seconds in an ultrasonic bath. Liquid PDMS was then poured over the mold and trapped 

bubbles were extracted by placing the liquid PDMS inside a vacuum chamber for 1h. The 

replica was then cured at 85°C for 45 minutes yielding a negative cast of the 

microchannel pattern. An enclosed microchannel was then formed by bonding the PDMS 

cast with another piece of PDMS via plasma treatment. The fabrication steps are depicted 

in Figure 59. 

As a result of the fabrication uncertainty, the sizes of the channels and the 

cylinders were different from their intended dimensions. To measure the actual sizes, an 

image processing technique, utilized by Akbari et al. [131], was used. Accuracy of this 

method was reported by Akbari et al. [131] to be 3.6 m .  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 59: Fabrication process steps for SU-8 micromold preparation via photopatterning of SU-8 
100 epoxy-based photopolymer: a) UV exposure, b) making the mold, c) pouring liquid PDMS, and 

d) plasma bonding and making the channels. 
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Our images revealed that the surfaces of the fabricated cylinders were rough, see 

Figure 60. As such, for determining the cylinders sizes, diameters of ten different 

cylinders were measured in three different directions for each sample and the average of 

these thirty values was considered as the size of the cylinders. In order to measure the 

width and the depth, the samples were cut at three random locations. The cutting lines 

were perpendicular to the channel to ensure a 90 deg viewing angle. The average of the 

measured values was considered as the actual size of the channels. The geometrical 

properties of the samples are summarized in Table 7. The channels’ names in the table 

indicate the cylinder arrangement, intended porosity, and the expected cylinders diameter, 

e.g., Sq-0.40-400 corresponds to square arrangement of 400 m  cylinders with a porosity 

of 0.4. In addition, the permeability of the embedded porous media, calculated from Eq. 

(51), is reported in Table 14. 

4.2.1.2 Test setup 

The open loop system, illustrated in Figure 61, was employed for measuring the 

steady-state pressure drop in the fabricated samples of micro-porous channels. A syringe  

 

Figure 60: Rough surface of the fabricated cylinders, Sq 04-400 (1). 
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Table 14: Geometrical properties of the fabricated samples. 

Channel d ( m ) S ( m )   K ( 2m ), Eq. (51) 

Sq-0.40-400 (1) 426 456 0.32 1.85×10-11 

Sq-0.40-400 (2) 418 456 0.34 3.30×10-11 

Sq-0.70-100 92 162 0.75 3.93×10-10 

Sq-0.90-50 52 129 0.89 8.49×10-10 

Sq-0.95-50 54 118 0.94 2.49×10-9 

Channel W ( mm ) h ( m ) L ( cm )  

Sq-0.40-400 (1) 3.18 96 1.46  

Sq-0.40-400 (2) 3.19 105 1.46  

Sq-0.70-100 1.45 105 1.72  

Sq-0.90-50 1.27 129 2.00  

Sq-0.95-50 1.70 118 2.22  

 

pump (Harvard Apparatus, QC, Canada) fed the system with a controlled flow rate with 

0.5% accuracy. Distilled water flowed through a submicron filter before entering the 

channel. 

To measure the pressure drop, a gauge pressure transducer (Omega Inc., Laval, 

QC, Canada) was fixed at the channel inlet while the channel outlet was discharged to the 

atmosphere. Teflon tubing (Scientific Products and Equipment, North York, Canada) was 

employed to connect the pressure transducer to the syringe pump and the microchannel. 

Pressure drops were measured for several flow rates in the range of 50-800 min/lit . 
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Figure 61: Schematic of the experimental setup for testing pressure drop in micro-porous channels. 

4.2.1.3 Analysis of experimental data 

Viscous dissipation effects are neglected in this study; thus, the properties of the 

flowing water are considered to be constant. The measured pressure drop during the 

experiment, totalP , is: 

evFDDctotal PPPPPP  minor
 

(76) 

where cP  is the pressure loss in the connecting tubes between the pressure transducer 

and the sample inlet, see Figure 61, DP  is the pressure drop in the developing region of 

the samples where the fully-developed flow is not achieved, FDP  is the pressure drop in 

the regions with fully-developed velocity distribution. minorP  is the pressure drop due 

to minor losses in the samples including 90 deg bends in the inlet and outlet of the 

samples, and evP  is the pressure drop corresponding to the electroviscous effect [141]. 

Akbari et al. [131] showed that minorP  and evP  are less than 1% of the FDP  and can 

be neglected. 
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The connecting pressure loss, cP , is measured directly at each flow rate when 

the end of the tubing is disconnected from the sample. To perform accurate 

measurements, the level of the tubing end should be identical to the case where the 

samples are connected; this prevents any error due to hydrostatic pressure difference. 

Akbari et al. [131] showed that the developing pressure drop in microchannels is less than 

1% of the total pressure loss and is negligible. In addition, for the case of pack fibers, 

fully-developed condition is achieved in the first three rows [63]. Therefore, it is expected 

that the measured pressure drop in the sample is associated with the fully-developed 

condition which is presented by Eq. (75).  

The uncertainty of the analysis is mostly a result of the uncertainty in the 

fabrication process and the uncertainty in the measurements. These uncertainties will 

affect the porosity and consequently the permeability of the porous medium which is a 

nonlinear function of porosity. The uncertainty in the permeability predictions can be 

determined from the following relationship: 
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The uncertainty in the measurement of pressure drop can be evaluated from the following 

equation: 
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Table 15: Uncertainty in the calculation of the involved parameters. 

Sample 

 )(E

 
K

KE )(
 

h

hE )(
 

)/(

)/(

LP

LPE




 

Sq-0.40-400 (1) 0.02 0.59 0.10 0.60 

Sq-0.40-400 (2) 0.02 0.54 0.10 0.55 

Sq-0.70-100 0.026 0.34 0.10 0.36 

Sq-0.90-50 0.02 0.44 0.08 0.44 

Sq-0.95-50 0.01 0.07 0.08 0.11 

where: 
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(79) 

The associated uncertainty with different parameters involved in the analysis is 

listed in Table 15. It can be seen that the overall uncertainty is significant; this is a direct 

result of the nonlinear nature of the relationship between geometrical parameters with 

permeability and the overall pressure drop. In the comparison of the experimental data 

with the theoretical predictions only the trends should be considered.  

4.2.2 Comparison of the model with the experimental data 

Figure 62 and Figure 63 include the measured values of pressure drop in the 

tested micro-porous channels versus the volumetric flow rate. The flow rates were 

selected such that the pressure drop in the channels was higher than the accuracy of the 

pressure transducer. It can be seen that the trends of the experimental data were well 

predicted by the theoretical results, Eq. (75). The difference between most of the 

measured data and the predicted values from Eq. (75) was less than %15. The deviations 

were more intense for Sq-0.9-50 (max 20%); therefore, the  15% region for theoretical 
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predictions is shown in Figure 63. It should be noted the deviation of the experimental 

data from the theoretical predictions is mostly caused by the inaccuracy in the channels 

cross-section measurement as discussed before and the deviations are lower than the 

uncertainty of the analysis. 

The experimental values of pressure drop had a linear relationship with 

volumetric flow rate. It can be argued that the channels had not been deformed during the 

experiment else a nonlinear trend would have been observed in the experimental data; for 

detailed discussions see [142]. Moreover, the linear trend of the experimental data shows 

that the minor losses and the inertial effects are insignificant in the tested samples. It 

should be noted that the maximum Reynolds number based on cylinders’ diameter is less 

than 5; this justifies the observed trends in the measured values. 

4.2.3 Numerical simulations 

Our analysis showed a significant uncertainty in the experimental study. 

Therefore, to further investigate the accuracy of the current analysis, the proposed 

analytical model will be verified through comparison with independent numerical 

simulations. Flow through 7 different geometries, listed in Table 16, is solved 

numerically using Fluent. The geometrical parameters of the fist 5 samples are identical 

to the fabricated channels. The geometry of the last 2 samples is selected such that a 

wider range of porosity and permeability is covered. 
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Figure 62: Channel pressure drop versus flow rate for Sq-0.4-400 (1), Sq-0.4-400 (2), and Sq-0.7-100. 
Lines show the theoretical values of pressure drop predicted by Eq. (75) and symbols show the 

experimental data. 
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Figure 63: Channel pressure drop versus flow rate for Sq-0.9-50 and Sq-0.95-50. Lines show the 
theoretical values of pressure drop predicted by Eq. (75) and symbols show the experimental data. 
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Figure 64: The considered unit cell and produced numerical grid for modeling of sample Sq-04-
400(2). 

The flow is assumed to be fully-developed, creeping, and constant properties 

(constant density and viscosity); therefore, modeling the region between two adjacent 

cylinders and applying a periodic boundary condition enable us to estimate the pressure 

gradient in the samples. An example of the considered geometry and the numerical grid 

produced by Gambit [122] is shown in Figure 64. 

The volumetric flow rate is set in the range covered by the experimental data to 

ensure that the Reynolds number based on averaged velocity and the cylinders diameter is 

low and the inertial effects are negligible. Fluent software [122] is used as the solver. 

Second order upwind scheme is selected to discretize the governing equations. SIMPLE 

algorithm is employed for pressure-velocity coupling. The inlet and outlet faces of the 

geometry are considered to be Periodic. Symmetry boundary condition is applied at sides 

of the considered unit cell. Grid parameters are varied to assess whether the predicted 

pressure drops are independent of the computational grid.  
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Table 16: Geometrical parameters of the samples considered in the numerical simulations. 

Channel d ( m ) S ( m )   W 
( mm ) 

h ( m ) L ( cm ) 

Sq-0.40-400 (1) 426 456 0.32 3.18 96 1.46 

Sq-0.40-400 (2) 418 456 0.34 3.19 105 1.46 

Sq-0.40-400 (3) 400 450 0.4 3.15 100 1.5 

Sq-0.50-400 400 500 0.5 3.0 100 1.5 

Sq-0.70-100 92 162 0.75 1.45 105 1.72 

Sq-0.90-50 52 129 0.89 1.27 129 2.00 

Sq-0.95-50 54 118 0.94 1.70 118 2.22 

In Figure 65 and Figure 66, the computed values of pressure drop for the tested 

samples are compared with the model and the experimental data. It can be seen that Eq. 

(75) can predict the trends of the experimental and numerical data; with the exception of 

Sq-0.9-50 the deviations between the model and the data is less than 15%. However, the 

difference between the numerical and the experimental results is due to the effects of the 

geometrical uncertainty involved in the experiments. 

4.2.4 Parametric study 

In the present micro-porous channels, two parameters affect the pressure drop: 1) 

the permeability, K ; 2) the channel depth, h . To investigate the effect of these 

parameters, the dimensionless pressure drop is plotted versus the Darcy number in Figure 

67. According to Nield and Kuznetsov [143] and Tamayol et al. [137], the hydrodynamic 

boundary layer thickness scales with K . The Darcy number, Kh / , can be 

interpreted as the ratio of the boundary layer thickness to the depth of the channel.  
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Figure 65: Experimental, numerical, and theoretical values of channel pressure drop predicted by 
Eq. (75) versus flow rate for Sq-0.4-400 (1), Sq-0.4-400 (2), and Sq-0.7-100.  
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Figure 66: Experimental, numerical, and theoretical values of channel pressure drop predicted by 
Eq. (75) versus flow rate for Sq-0.9-50 and Sq-0.95-50.  



 

 

125 

Figure 67 shows that Eq. (75) is in reasonable agreement with the experimental 

data. In addition, it can be seen that Eq. (75) has two asymptotes. For micro-porous 

channels with very dilute porous medium, i.e., low Darcy number, the pressure drop can 

be predicted by solving the Navier-Stokes equation for plain fluid. For channels with very 

packed porous medium, i.e., high Darcy numbers, Eq. (75) and the Darcy law predict the 

same results. Therefore, one can conclude that the Darcy number can be used for 

determining the controlling parameter in the pressure drop in micro-porous channels. 

4.3 Flow in channels partially filled with porous media 

As discussed in Chapter 2, fluid flow in channel or systems partially filled with 

porous media has a wide range of engineering applications. In this study, creeping flow 
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Figure 67: Dimensionless pressure drop versus Darcy number squared. 
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through mini/microchannels filled with regular arrays of cylinders, as shown in Figure 

68, is investigated. Similar to the analysis of flow through channels fully filled with 

porous media, the channel is considered to be wide enough such that the flow-field can be 

modeled two dimensionally, as shown in Figure 68c. Moreover, flow is assumed to be 

incompressible, constant properties, fully-developed, and creeping.  

 

(a) 

 

(b) 

 

(c) 

Figure 68: a) and b) Flow through channels partially filled with arrays of cylinders, c) simplified 2D 
geometry. 
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The domain can be divided into two regions. The upper region in Figure 68c only 

contains the fluid phase; thus, the Stokes equation can be used: 
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(80) 

The applied boundary conditions in the region 1 are: 

0)(,)( int  Huuu 
 

(81) 

where intu  is the interface velocity in the region 1. In the porous region (Region 2), 

Brinkman equation is used for calculating the volume averaged velocity distribution: 
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(82) 

with the following boundary conditions: 

int)(,0)0( DDD UUU  
 

(83) 

where intDU  is the interface velocity in the porous region.  

4.3.1 Solution development 

The velocity distribution in the fluid region described by Eq. (80) subjected to 

boundary conditions (81), is: 
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The solution of Eq. (82) with the boundary conditions of (83) is: 
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In Eqs. (84)-(87), intDU  and intu  remain unknown. These parameters can be found 

through applying suitable conditions at the fluid porous interface. Various interface 

boundary conditions proposed by researchers have been reviewed by Vafai and Alazmi 

[117]. Moreover, they [117] showed that the overall effects of various interface 

conditions on the velocity distribution are not significant. As such, the following 

conditions are considered at the interface: 
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which indicate the continuity of velocity and shear stress at the interface. Using Eqs. 

(84)-(87) and the interface conditions of (88) the interface velocity is calculated as: 
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Having the velocity distribution, Eqs. (84)-(87) and (89) can be integrated over the entire 

area, H , to calculate the pressure drop as a function of flow rate and the geometrical 

properties of the channel and the porous medium. It is noteworthy that permeability 

should be calculated from Eq. (51). 

4.3.2 Comparison with experimental data 

Arthur et al. [115], using a PIV technique, measured the velocity distribution 

through a channel partially filled with porous media comprised of regular arrays of 

cylinders. The reported values for velocity in the porous region are volume averaged 

velocity. The properties of the tested samples are listed in Table 17. In Figure 69, the 

reported velocity profile reported by Arthur et al. [115] is compared by the theoretical 

calculations. It can be seen that the proposed solution can capture the observed trends in 

the experimental results with a reasonable accuracy. Moreover, It can be seen that as the 

porosity increases, i.e., the permeability increases, a larger volumetric flow rate passes 

through the porous medium. For the case 1 with   = 0.99, the velocity distribution is 

very similar to an empty channel without porous medium and the effect of the porous 

medium is not significant.  

4.3.3 Numerical simulations 

To investigate the accuracy of the current analysis, the proposed analytical model 

will be verified through comparison with numerical simulations. Flow through 3 different 

geometries, listed in Table 18, is solved numerically using Fluent. The flow is assumed to 
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Table 17: Geometrical parameters and averaged velocity for the samples tested by Arthur et al. 
[115]. 

Case d ( mm ) S ( mm )   H ( mm ) 
U 
( smm / ) 

1 1.59 14.09 0.99 25 0.71 

2 1.59 8.91 0.975 25 0.55 

3 3.18 8.91 0.9 25 0.59 

4 3.18 6.01 0.78 25 0.56 
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Figure 69: Comparison of the velocity distribution reported by Arthur et al. [115] and the theoretical 
predictions by Eqs. (51) and (89). 

be fully-developed, creeping, and constant properties; therefore, by applying a periodic 

boundary condition, only flow through one row of cylinders is solved numerically. An 

example of the considered geometry and the numerical grid produced by Gambit [122] is 

shown in Figure 70. 
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Fluent software [122] is used as the solver. Second order upwind scheme is 

selected to discretize the governing equations. SIMPLE algorithm is employed for 

pressure-velocity coupling. The inlet and outlet faces of the geometry are considered to 

be Periodic. A no slip boundary condition is applied at the solid surfaces including the 

channel walls. Grid parameters are varied to test whether the predicted pressure drops are 

independent of the computational grid.  

(a) 

(b) 

 

Figure 70: a) The considered geometry and b) the produced numerical grid for modeling of sample 
with  =0.4. 

The volume averaged and the actual velocity distributions for porous media with 

  = 0.7 and 0.9 are compared in Figure 71 and Figure 72, respectively. The model can 

accurately predict the average of the actual velocity profiles. 

Table 18: Geometrical parameters considered in the numerical simulations. 

Channel d ( m ) S ( m )   H ( mm )  ( mm ) K ( 2m ) 

1 100 114 0.99 1.7 1.25 6.62×10-8 

2 100 162 0.975 2.4 1.75 2.79×10-6 

3 100 280 0.9 4.2 3.0 3.52×10-5 
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Figure 71: Comparison of the volume averaged (Eqs. (51) and (89)) and actual dimensionless velocity 
distributions in the channel filled with porous media with  =0.7. 

The computed velocity distributions for the three different cases are plotted in 

Figure 73. It can be seen that as the porosity increases, i.e., the permeability increases, a 

larger fraction of the flow passes through the porous medium. This is in agreement with 

the observed trends in the experimental data reported by Arthur et al. [115]. Therefore, 

for example for a typical fuel cell shown in Figure 4c where the GDL thickness is less 

than 400 m , the in-plane permeability is approximately 211101 m , and the channel 

height is 3 mm , less than 3% of flow passes through GDL. This result, confirms that gas 

transport in the GDL is mostly diffusive rather than convective. 
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Figure 72: Comparison of the volume averaged (Eqs. (51) and (89))and actual dimensionless velocity 
distributions in the channel filled with porous media with  =0.9. 
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Figure 73: Effects of porosity on the dimensionless microscopic velocity distribution through the 
channels partially filled with porous media.  
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5: CONCLUSIONS AND FUTURE WORK 

The main focuses of this dissertation were on studying flow through systems that 

include fibrous porous media and the resulting pressure drop both theoretically and 

experimentally. The project was divided into two main parts: i) microscopic analysis and 

ii) macroscopic modeling. 

Flow properties of fibrous porous media including permeability and inertial 

coefficient were investigated. Various techniques were employed to develop fundamental 

understanding and models on the relationship between flow properties and salient 

geometrical parameters. Moreover, three different testbeds were designed and built for 

performing experiments to verify the theoretical analyses. The key contributions of the 

present dissertation in this part can be summarized as follows: 

1- An approximate but accurate model for flow distribution and permeability of 

ordered arrays of fibers/cylinders was developed. 

2- A novel scale analysis technique for permeability of 1D, 2D, and 3D fibrous 

materials was proposed. The developed relationships were verified through 

comparison with experimental data for a variety of materials measured during 

this research or reported by others. 

3- Mixing rules were successfully employed for predicting in-plane permeability 

of complex, random microstructures. 
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4- Effects of compression and PTFE content on the permeability of GDLs were 

measured. Moreover, the proposed model could capture the observed trends in 

the experimental data. 

5- Effects of salient microstructural properties specifically fiber orientation on 

the pressure drop for moderate Reynolds number flows were investigated. The 

results were used to develop correlations for inertial coefficient in the 

investigated materials. 

In the second part of the thesis, the developed models for permeability were 

combined with volume-averaged equations to estimate volume-averaged velocity 

distribution and pressure drop in confined porous media. The considered problems 

were flow through channels fully or partially filled with fibrous media. The 

highlights of my research in this part are: 

1- In a novel analysis, the accuracy of the Brinkman equation in the micron-size 

system was investigated.  

2- Simple, closed-form analytical solutions for flow through channels partially 

filled with porous media were developed and it was shown that this simple 

analysis was accurate enough to be used in engineering analysis. 

The outcomes of this dissertation provide new insights on the convective transport 

in fibrous porous materials and are beneficial for designing related systems such as fuel 

cells and compact heat exchangers. 



 

 

136 

5.1 Future plan 

The following directions can be considered as the continuation of this dissertation: 

1- Perform numerical simulations and experimental measurements on 

fibrous materials with random microstructure. This should be used to 

develop compact relationships for the inertial coefficient of the tested 

materials. 

2- Extend the analysis to convective heat transfer. Specially, the scale 

analysis technique and the mixing rules have the potential to be used 

for determining the interstitial heat transfer coefficient of complex 

microstructures. 

3- Investigate two phase flow through hydrophobic fibrous media such as 

GDLs of PEMFCs or porous structures with pore size distribution in 

the range of nano to micro millimeters. The water permeability 

(apparent permeability) in these structures is different from the actual 

permeability studied in this dissertation. 

4- Conduct experiments on flow through various GDLs in the in-plane 

and through-plane directions and including effects of microporous 

layer in the analysis.  

5- Test other regular and irregular arrays of microcylinders and also 

random fibrous nanostructures to verify the analysis for microchannels 

fully or partially filled with porous media for more cases.  
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APPENDIX A: EXPERIMENTAL DATA COLLECTED 
FROM DIFFERENT SOURCES 

The experimental and numerical data that are used in various sections of the 

dissertation are listed in Table 19-Table 24. Other information, such as the tested 

materials, working fluid, and the range of Reynolds numbers are provided in Table 3 for 

all the listed data. 

Table 19: Summary of the experimental data used in the dissertation for normal permeability of 1D 
ordered arrangements of fibers. 

Authors Porosity (  ) 
Dimensionless 
permeability 

( 2/ dK ) 
Sadiq et al. (1995) 0.386 0.0007 

0.415 0.0013 
0.488 0.0030 
0.514 0.0039 
0.592 0.0098 
0.611 0.0100 

Bergelin et al. 
(1950) 

0.418 0.0015 
0.496 0.0024 
0.597 0.0088 
0.650 0.0120 

Kirsch and Fuchs 
(1967) 

0.699 0.0329 
0.798 0.0792 
0.848 0.1472 
0.888 0.2405 
0.933 0.6255 
0.953 1.0761 
0.963 1.4674 
0.980 4.3425 
0.988 9.6748 
0.992 19.9407 

Chemielewski and 
Jayaraman (1992) 

0.700 0.027 
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Khomami and 
Moreno (1997) 

0.450 0.005 
0.860 0.128 

Zhong et al. 
(2006) 

0.900 0.308 
0.950 0.952 
0.975 2.857 

Skartsis et al. 
(1992) 

0.455 0.0015 
0.68 0.024 

Higdon and Ford 
(1996), numerical 

0.99 9.773 
0.95 0.998 
0.9 0.313 
0.8 0.077 
0.7 0.027 
0.6 0.011 
0.5 0.004 
0.4 0.00145 
0.3 0.00041 

0.25 0.00018 
0.215 0.00009 

 

Table 20: Summary of the experimental and numerical data used in the dissertation for parallel 
permeability of 1D ordered arrangements of fibers. 

Authors Porosity (  ) 
Dimensionless 
permeability 

( 2/ dK ) 
Sangani and Yao 
(1988), numerical 

0.3 0.0002 
0.5 0.0011 
0.7 0.0058 
0.9 0.0638 

Sullivan (1942) 0.215 0.0012 
0.091 0.00008 

Skartsis et al. 
(1992) 

0.4373 0.00827 
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Table 21: Summary of the experimental and numerical data used in the dissertation for parallel 
permeability of 2D materials including GDLs. 

Authors Porosity (  ) 
Dimensionless 
permeability 

( 2/ dK ) 
Gostick et al. 
(2006) 

0.735 0.0334 
0.762 0.0400 
0.778 0.0509 
0.811 0.0776 
0.828 0.1130 
0.849 0.1839 

 0.859 0.2453 
 0.732 0.0622 
 0.76 0.0777 
 0.773 0.0928 
 0.787 0.1384 
 0.808 0.1848 
 0.645 0.0358 
 0.685 0.0466 
 0.731 0.0790 
 0.755 0.0943 
 0.773 0.1149 
 0.783 0.1464 
 0.791 0.1746 
Feser et al. (2006) 0.71 0.052 

0.73 0.069 
0.76 0.087 
0.77 0.113 

Shi and Lee 
(1998) 

0.56 0.0063 
0.57 0.0081 
0.64 0.0199 
0.69 0.0311 

 

Table 22: Summary of the experimental data used in the dissertation for normal permeability of 2D 
materials including GDLs. 

Authors Porosity (  ) 
Dimensionless 
permeability 

( 2/ dK ) 
Molnar (1989) 0.825 0.0974 

0.847 0.1095 
0.872 0.1231 

 0.893 0.1451 
 0.919 0.2162 
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Authors Porosity (  ) 
Dimensionless 
permeability 

( 2/ dK ) 
Davies (1952) 0.779 0.0654 

0.808 0.1021 
0.83 0.1321 
0.85 0.1750 

 0.87 0.2162 
 0.88 0.1835 
 0.90 0.3375 
 0.90 0.4168 
 0.90 0.5269 
 0.91 0.4686 
 0.91 0.3454 
 0.92 0.5394 
 0.92 0.6209 
 0.92 0.5394 
Gostick et al. 
(2006) 

0.88 0.423 
0.81 0.216 
0.84 0.268 

 0.85 0.110 
 0.8 0.102 
Zobel et al. (2007) 0.965 0.666 

0.962 0.586 
0.918 0.189 

 0.898 0.123 
 0.893 0.225 
 0.872 0.097 
 0.849 0.115 
Kostornov and 
Shevchuck (1967) 
 

0.29 0.00004 
0.36 0.00035 
0.49 0.00150 
0.59 0.00538 
0.69 0.01428 
0.29 0.00019 
0.36 0.00054 
0.49 0.00210 
0.59 0.00705 

 0.69 0.01925 
 0.29 0.00004 
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Table 23: Summary of the experimental and numerical data used in the dissertation for normal 
permeability of 3D materials with the exception of metalfoams. 

Authors Porosity (  ) 
Dimensionless 
permeability 

( 2/ dK ) 
Carman (1937) 0.681 0.035 

0.688 0.040 
0.722 0.0585 

 0.731 0.0613 
 0.757 0.0805 
 0.765 0.09475 
Rahli et al. (1997) 0.600 0.013 

0.640 0.022 
0.700 0.041 

 0.739 0.081 
 0.769 0.119 
 0.800 0.163 
 0.840 0.345 
 0.851 0.409 
 0.890 0.864 
Jackson and 
James (1982) 

0.9896 18.75 
0.99379 29.25 
0.99586 51 
0.99724 66.75 

 0.99793 77 
 0.99862 125 
 0.99931 332.5 
Rahli et al. (1996) 0.388 0.00083 

0.462 0.00259 
0.525 0.00440 
0.599 0.013 

 0.643 0.021 
 0.697 0.041 
 0.739 0.079 
 0.773 0.124 
 0.804 0.164 
 0.847 0.342 
 0.896 0.803 
Higdon and Ford 
(1996), numerical 

0.9856 9.681 
0.9784 5.566 
0.9179 0.7414 

 0.8762 0.3639 
 0.8272 0.1933 
 0.7739 0.1027 
 0.7163 0.0591 
 0.653 0.0339 
 0.5882 0.0195 
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Authors Porosity (  ) 
Dimensionless 
permeability 

( 2/ dK ) 
 0.4571 0.0059 
 0.3318 0.0016 
 0.2166 0.00029 

 

Table 24: Summary of the experimental and numerical data used in the dissertation for permeability 
of metalfoams. 

Authors Porosity (  ) 
PPI Ligament 

diameter 
( d ) 

Pore 
diameter 

( pd ) 

Permeability 
( K ) 

Khayargoli et 
al. (2004) 

0.9 11.16 N.A. 1.40×10-3 2.76×10-8 
0.89 17.23 N.A. 9.00×10-4 1.55×10-8 
0.9 27.33 N.A. 6.00×10-4 4.87×10-9 

 0.83 37.43 N.A. 5.00×10-4 3.39×10-9 
 0.86 47.53 N.A. 4.00×10-4 1.77×10-9 
 0.9 11.16 N.A. 1.40×10-3 2.76×10-8 
Boomsma and 
Poulikakos 
(2002) 

0.921 10 N.A. 0.0069 3.53×10-7 
0.92 20 N.A. 0.0036 1.09×10-7 
0.928 40 N.A. 0.0023 7.12×10-8 
0.921 10 N.A. 0.0069 3.53×10-7 

Dukhan (2006) 0.919 10 0.000439 0.002057 1×10-7 
0.915 10 0.000443 0.002053 8×10-8 

 0.919 20 0.000222 0.001037 6.3×10-8 
 0.924 20 0.00022 0.00104 5.4×10-8 
Bhattacharya 
et al. (2002) 

0.9726 5 0.0005 0.00402 2.70×10-7 
0.9118 5 0.00055 0.0038 1.80×10-7 
0.9486 10 0.0004 0.00313 1.20×10-7 

 0.9138 10 0.00045 0.00328 1.10×10-7 
 0.8991 10 0.00043 0.0032 9.40E-08 
 0.9546 20 0.0003 0.0027 1.30×10-7 
 0.9245 20 0.00035 0.0029 1.10×10-7 
 0.9005 20 0.00035 0.00258 9.00×10-8 
 0.9659 40 0.0002 0.0019 5.00×10-8 
 0.9272 40 0.00025 0.00202 6.10×10-8 
 0.9132 40 0.0002 0.0018 5.30×10-8 
 0.971 5 0.00051 0.004 2.52×10-7 
 0.946 5 0.00047 0.0039 2.17×10-7 
 0.905 5 0.00049 0.0038 1.74×10-7 
 0.949 10 0.00037 0.0031 1.49×10-7 
 0.909 10 0.00038 0.00296 1.11×10-7 
 0.978 20 0.00038 0.0028 1.42×10-7 
 0.949 20 0.00032 0.0027 1.19×10-7 
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Authors Porosity (  ) 
PPI Ligament 

diameter 
( d ) 

Pore 
diameter 

( pd ) 

Permeability 
( K ) 

 0.906 20 0.00034 0.0026 8.54×10-8 
 0.972 40 0.00023 0.0018 5.20×10-8 
 0.952 40 0.00024 0.00198 5.62×10-8 
 0.937 40 0.00024 0.002 5.68×10-8 
 0.92 10 N.A. 0.00443 2.00×10-7 
 0.87 50 N.A. 0.0004 2.28×10-9 
 0.87 50 N.A. 0.000569 2.68×10-9 
 0.91 50 N.A. 0.000831 6.19×10-9 
 0.88 50 N.A. 0.00184 2.32×10-8 
 0.89 50 N.A. 0.002452 2.98×10-8 
 0.89 100 N.A. 0.002452 3.35×10-8 
Bonnet et al. 
(2008) 

0.92 10 N.A. 0.00443 2.00×10-7 
0.87 50 N.A. 0.0004 2.28×10-9 

 0.87 50 N.A. 0.000569 2.68×10-9 
 0.91 50 N.A. 0.000831 6.19×10-9 
 0.88 50 N.A. 0.00184 2.32×10-8 
 0.89 50 N.A. 0.002452 2.98×10-8 
 0.89 100 N.A. 0.002452 3.35×10-8 

 



 

 

162 

 

APPENDIX B: DETAILS OF THE EXPERIMENTAL 
MEASUREMENTS CARRIED OUT IN THE 
DISSERTATION  

Details of the experimental measurements for calculating flow properties of the 

investigated materials, described in Sections 3.5, 3.6, and 3.7, are listed in this appendix. 

In Table 25-Table 27 data from different trials for measuring properties of similar 

samples are also included. The analysis of uncertainty associated with each experiment is 

available in the designated section in the text. 

Table 25: Summary of the measurements and calculations for determining permeability of tube 
banks and metalfoams; pure glycerol with viscosity of 1.4 is used as working fluid.  

Porosity 
( ) 

Fiber 
diameter 

(mm) 

Flow rate 
(lps×10-7) 

Length* 
(mm) 

Pressure 
drop (Pa) 

Reynolds 
number 

Permeability 
(K×10-7) 

Tube bank 
0.8 1.5 2.7 59 243.5 0.00065 1.3 
0.8 1.5 65 59 601.2 0.00158 1.2 
0.8 1.5 57 59 523.8 0.00138 1.2 
0.8 1.5 16 59 144.7 0.00040 1.3 
0.8 1.5 4.9 59 42.0 0.00012 1.3 
0.8 1.5 13 59 121.9 0.00032 1.3 
0.8 1.5 38 59 337.1 0.00091 1.3 
0.8 1.5 6.3 52 47.1 0.00016 1.2 
0.8 1.5 57 52 460.8 0.00139 1.1 
0.8 1.5 32 52 251.4 0.00079 1.2 
0.8 1.5 21 52 158.9 0.00051 1.2 
0.8 1.5 13 52 101.1 0.00033 1.2 

0.85 1.5 1.87 52 56.8 0.0005 3.42 
0.85 1.5 2.89 52 90.0 0.0007 3.33 
0.85 1.5 9.12 52 281.0 0.0023 3.37 
0.85 1.5 5.04 52 155.1 0.0013 3.37 
0.85 1.5 10.91 52 330.9 0.0027 3.42 
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Porosity 
( ) 

Fiber 
diameter 

(mm) 

Flow rate 
(lps×10-7) 

Length* 
(mm) 

Pressure 
drop (Pa) 

Reynolds 
number 

Permeability 
(K×10-7) 

0.85 1.5 12.95 52 397.4 0.0032 3.38 
0.85 1.5 2.94 52 89.5 0.0007 3.41 
0.85 1.5 7.40 52 222.6 0.0018 3.45 
0.85 1.5 1.34 52 40.6 0.0003 3.42 
0.85 1.5 4.56 52 136.6 0.0011 3.46 
0.85 1.5 5.27 52 156.5 0.0013 3.50 
0.85 1.5 2.27 52 67.7 0.0006 3.48 
0.85 1.5 12.13 52 361.3 0.0030 3.48 
0.9 1.5 4.68 80 135.6 0.0012 5.55 
0.9 1.5 3.3 80 92.9 0.0008 5.73 
0.9 1.5 12 80 356.5 0.0030 5.42 
0.9 1.5 14.4 80 434.0 0.0036 5.36 
0.9 1.5 20.3 80 620.2 0.0051 5.27 
0.9 1.5 2.25 80 62.5 0.0006 5.79 
0.9 1.5 5.67 80 171.7 0.0014 5.32 
0.9 1.5 3.53 52 70.6 0.0009 3.33 
0.9 1.5 1.12 52 21.5 0.0003 3.48 
0.9 1.5 5.58 52 111.9 0.0014 3.32 
0.9 1.5 8.70 52 153.6 0.0021 3.77 
0.9 1.5 17.50 52 323.5 0.0043 3.60 
0.9 1.5 10.97 52 201.5 0.0027 3.63 

Metalfoams 
0.929 (10)‡ 0.41 9.60 52 443.9 0.00075 2.51 

0.929  0.41 2.73 52 126.7 0.00021 2.50 
0.929 0.41 0.82 52 30.8 0.00006 3.08 
0.929 0.41 2.51 52 116.5 0.00020 2.50 
0.929 0.41 5.36 52 260.8 0.00042 2.38 
0.929 0.41 14.80 52 712.3 0.00116 2.41 
0.929 0.41 1.95 52 84.0 0.00015 2.69 
0.929 0.41 7.59 52 333.5 0.00059 2.64 
0.929 0.41 7.65 52 357.7 0.00060 2.48 

0.929 (10) 0.41 2.12 52 87.1 0.00017 2.71 
0.929 0.41 10.56 52 527.5 0.00084 2.68 
0.929 0.41 3.30 52 131.9 0.00026 2.78 
0.929 0.41 7.53 52 304.3 0.00060 2.75 

0.934 (20) 0.3 2.38 52 195.0 0.00013 1.48 
0.934 0.3 4.17 52 363.7 0.00024 1.39 
0.934 0.3 1.65 52 136.6 0.00009 1.46 
0.934 0.3 0.70 52 54.9 0.00004 1.55 
0.934 0.3 2.92 52 248.2 0.00017 1.43 
0.934 0.3 4.88 52 421.6 0.00028 1.40 
0.934 0.3 2.49 52 209.3 0.00014 1.44 
0.934 0.3 7.80 52 632.1 0.00044 1.50 

0.934 (20) 0.3 3.28 52 228.7 0.00020 1.61 
0.934 0.3 9.42 52 668.6 0.00057 1.58 
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Porosity 
( ) 

Fiber 
diameter 

(mm) 

Flow rate 
(lps×10-7) 

Length* 
(mm) 

Pressure 
drop (Pa) 

Reynolds 
number 

Permeability 
(K×10-7) 

0.934 0.3 1.34 52 81.0 0.00008 1.86 
0.934 0.3 5.09 52 341.8 0.00031 1.68 
0.934 0.3 2.35 52 150.4 0.00014 1.76 
0.934 0.3 2.93 52 249.2 0.00018 1.32 

0.942 (40) 0.2 2.79 52 115.2 0.00037 0.84 
0.942 0.2 2.75 52 112.4 0.00036 0.85 
0.942 0.2 9.74 52 455.3 0.00129 0.74 
0.942 0.2 9.08 52 422.1 0.00120 0.74 
0.942 0.2 3.82 52 151.3 0.00050 0.87 
0.942 0.2 6.51 52 291.4 0.00086 0.77 
0.942 0.2 11.73 52 543.2 0.00155 0.75 
0.942 0.2 12.47 52 555.1 0.00165 0.78 

0.942 (40) 0.2 0.81 52 417.3 0.00011 0.81 
0.942 0.2 0.81 52 412.6 0.00010 0.81 
0.942 0.2 0.82 52 562.2 0.00014 0.82 
0.942 0.2 0.80 52 745.1 0.00019 0.80 
0.942 0.2 0.81 52 236.8 0.00006 0.81 

* The distance between pressure taps. 

‡ The number in the parentheses shows the PPI in metalfoam samples. 

Table 26: Summary of the measurements and calculations for determining the permeability of 
GDLs; samples diameter is 0.0254 m. 

Initial 
thickness 

( m ) 

Thickness 
( m ) Porosity (  ) 

PTFE 
(%) 

Pressure 
drop (Pa) 

Flow 
rate 

(lpm) 

Permeability 
( K ) 

Toray TGP 120 

380 380 0.8 0 28.6 1.5 1.30×10-11 
380 380 0.8 0 46.8 2 1.06×10-11 
380 380 0.8 0 69.0 3 1.08×10-11 
380 380 0.8 0 96.9 4 1.02×10-11 
380 380 0.8 0 128.3 5 9.64×10-12 
380 380 0.8 0 157.9 6 9.40×10-12 
368 368 0.8 0 35.9 1.5 1.00×10-11 
368 368 0.8 0 45.8 2 1.05×10-11 
368 368 0.8 0 66.3 3 1.09×10-11 
368 368 0.8 0 87.4 4 1.10×10-11 
368 368 0.8 0 114.8 5 1.04×10-11 
377 350 0.78 0 30.6 1.5 1.12×10-11 
377 350 0.78 0 47.6 2 9.58×10-12 
377 350 0.78 0 69.0 3 9.91×10-12 
377 350 0.78 0 97.7 4 9.33×10-12 
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Initial 
thickness 

( m ) 

Thickness 
( m ) Porosity (  ) 

PTFE 
(%) 

Pressure 
drop (Pa) 

Flow 
rate 

(lpm) 

Permeability 
( K ) 

377 350 0.78 0 132.1 5 8.63×10-12 
377 350 0.78 0 173.9 6 7.86×10-12 
374 325 0.76 0 39.6 1.5 8.02×10-12 
374 325 0.76 0 50.0 2 8.46×10-12 
374 325 0.76 0 83.2 3 7.63×10-12 
374 325 0.76 0 111.8 4 7.57×10-12 
374 325 0.76 0 159.7 5 6.63×10-12 
379 285 0.73 0 49.6 1.5 5.61×10-12 
379 285 0.73 0 66.3 2 5.60×10-12 
379 285 0.73 0 102.7 3 5.42×10-12 
379 285 0.73 0 144.3 4 5.14×10-12 
379 285 0.73 0 204.1 5 4.55×10-12 
372 272 0.72 0 56.3 1.5 4.72×10-12 
372 272 0.72 0 77.2 2 4.59×10-12 
372 272 0.72 0 117.6 3 4.52×10-12 
372 272 0.72 0 164.7 4 4.30×10-12 
364 364 0.79 10 36.4 1.5 9.77×10-12 
364 364 0.79 10 47.3 2 1.00×10-11 
364 364 0.79 10 72.0 3 9.88×10-12 
364 364 0.79 10 93.7 4 1.01×10-11 
364 364 0.79 10 121.3 5 9.77×10-12 
364 364 0.79 10 150.3 6 9.47×10-12 
365 365 0.79 10 33.9 1.5 1.05×10-11 
365 365 0.79 10 46.1 2 1.03×10-11 
365 365 0.79 10 68.5 3 1.04×10-11 
365 365 0.79 10 94.7 4 1.00×10-11 
365 365 0.79 10 128.1 5 9.28×10-12 
365 365 0.79 10 160.7 6 8.87×10-12 
365 365 0.77 20 35.7 1.5 1.00×10-11 
365 365 0.77 20 45.0 2 1.06×10-11 
365 365 0.77 20 76.4 3 9.33×10-12 
365 365 0.77 20 108.1 4 8.80×10-12 
365 365 0.77 20 148.9 5 7.98×10-12 
365 365 0.77 20 203.0 6 7.03×10-12 
371 371 0.77 20 36.9 1.5 9.80×10-12 
371 371 0.77 20 50.3 2 9.57×10-12 
371 371 0.77 20 74.0 3 9.77×10-12 
371 371 0.77 20 108.9 4 8.85×10-12 
371 371 0.77 20 141.8 5 8.50×10-12 
347 347 0.76 30 54.1 1.5 6.27×10-12 
347 347 0.76 30 76.5 2 5.91×10-12 
347 347 0.76 30 121.1 3 5.60×10-12 
347 347 0.76 30 53.3 1.5 6.36×10-12 
347 347 0.76 30 78.7 2 5.74×10-12 
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Initial 
thickness 

( m ) 

Thickness 
( m ) Porosity (  ) 

PTFE 
(%) 

Pressure 
drop (Pa) 

Flow 
rate 

(lpm) 

Permeability 
( K ) 

Toray TGP 90 

267 267 0.8 0 21.6 1.5 1.02×10-11 
267 267 0.8 0 31.0 2 9.22×10-12 
267 267 0.8 0 46.2 3 8.71×10-12 
267 267 0.8 0 63.4 4 8.45×10-12 
267 267 0.8 0 86.7 5 7.76×10-12 
254 240 0.8 0 113.6 6 7.45×10-12 
254 240 0.79 0 30.6 1.5 1.09×10-11 
254 240 0.79 0 39.5 2 1.01×10-11 
254 240 0.79 0 64.1 3 1.01×10-11 
254 240 0.79 0 83.0 4 9.86×10-12 
254 240 0.79 0 114.7 5 9.02×10-12 
254 240 0.79 0 154.5 6 8.26×10-12 
260 228 0.77 0 30.6 1.5 7.27×10-12 
260 228 0.77 0 39.5 2 7.51×10-12 
260 228 0.77 0 64.1 3 6.95×10-12 
260 228 0.77 0 83.0 4 7.15×10-12 
260 228 0.77 0 114.7 5 6.47×10-12 
260 228 0.77 0 154.5 6 5.77×10-12 
267 207 0.74 0 31.7 1.5 6.38×10-12 
267 207 0.74 0 44.8 2 6.02×10-12 
267 207 0.74 0 71.2 3 5.68×10-12 
267 207 0.74 0 99.4 4 5.43×10-12 
267 207 0.74 0 142.3 5 4.74×10-12 
267 207 0.74 0 192.6 6 4.20×10-12 
255 200 0.74 0 34.6 1.5 5.65×10-12 
255 200 0.74 0 52.0 2 5.01×10-12 
255 200 0.74 0 77.4 3 5.05×10-12 
255 200 0.74 0 107.8 4 4.83×10-12 
255 200 0.74 0 149.0 5 4.37×10-12 
255 200 0.74 0 209.5 6 3.73×10-12 

Sigracet SGL 10AA 

414 414 0.88 0 9.1 1.5 4.46×10-11 
414 414 0.88 0 13.3 2 4.05×10-11 
414 414 0.88 0 22.2 3 3.65×10-11 
414 414 0.88 0 32.3 4 3.33×10-11 
414 414 0.88 0 47.8 5 2.82×10-11 
414 414 0.88 0 64.3 6 2.51×10-11 
385 290 0.84 0 11.2 1.5 2.53×10-11 
385 290 0.84 0 16.0 2 2.36×10-11 
385 290 0.84 0 25.5 3 2.22×10-11 
385 290 0.84 0 37.9 4 1.99×10-11 
385 290 0.84 0 55.0 5 1.72×10-11 
385 290 0.84 0 76.6 6 1.48×10-11 
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Initial 
thickness 

( m ) 

Thickness 
( m ) Porosity (  ) 

PTFE 
(%) 

Pressure 
drop (Pa) 

Flow 
rate 

(lpm) 

Permeability 
( K ) 

432 250 0.79 0 14.7 1.5 1.66×10-11 
432 250 0.79 0 20.4 2 1.60×10-11 
432 250 0.79 0 34.3 3 1.42×10-11 
432 250 0.79 0 48.0 4 1.36×10-11 
432 250 0.79 0 67.4 5 1.21×10-11 
432 250 0.79 0 95.7 6 1.02×10-11 
409 207 0.76 0 17.1 1.5 1.17×10-11 
409 207 0.76 0 26.9 2 9.92×10-12 
409 207 0.76 0 44.4 3 9.03×10-12 
409 207 0.76 0 63.8 4 8.37×10-12 
409 207 0.76 0 88.9 5 7.51×10-12 
409 207 0.76 0 125.8 6 6.37×10-12 

 

Table 27: Summary of the measurements and calculations for determining flow properties of tube 
banks in the moderate range of Reynolds number; the distance between pressure taps is 0.052 m and 

the fiber diameter is 1.5 mm.  

Porosity 
( ) 

Darcy 
velocity 

(m/s) 

Pressure 
drop (Pa) 

Density 
(kg/m3) 

Reynolds 
number 

 /U  610/  LUP 

0.8 0.010 141.3 1182 0.48 313.2 6.88 
0.8 0.012 162.7 1182 0.56 361.0 6.87 
0.8 0.022 303.8 1182 1.03 671.1 6.90 
0.8 0.012 158.9 1182 0.55 354.3 6.83 
0.8 0.045 624.0 1182 2.11 1373.3 6.92 
0.8 0.032 436.3 1182 1.48 960.2 6.92 
0.8 0.039 529.5 1182 1.80 1168.0 6.91 
0.8 0.022 304.3 1182 1.04 675.0 6.87 
0.8 0.074 393.6 1148 10.92 7093.3 8.73 
0.8 0.062 322.8 1148 9.22 5985.7 8.49 
0.8 0.044 225.4 1148 6.52 4235.0 8.38 
0.8 0.033 167.5 1148 4.88 3170.8 8.31 
0.8 0.082 432.5 1148 12.16 7894.8 8.62 
0.8 0.064 336.6 1148 9.57 6212.7 8.53 
0.8 0.031 155.6 1148 4.54 2948.1 8.31 
0.8 0.020 99.5 1148 2.96 1922.3 8.15 
0.8 0.078 414.0 1148 11.64 7555.3 8.63 

0.85 0.037 101.0 1148 3.9 2506.6 3.16 
0.85 0.063 176.0 1148 6.6 4285.1 3.22 
0.85 0.065 179.3 1148 6.8 4439.8 3.17 
0.85 0.049 133.3 1148 5.1 3326.5 3.14 
0.85 0.139 406.4 1148 14.6 9475.5 3.36 
0.85 0.066 180.3 1148 6.9 4502.5 3.14 
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Porosity 
( ) 

Darcy 
velocity 

(m/s) 

Pressure 
drop (Pa) 

Density 
(kg/m3) 

Reynolds 
number 

 /U  610/  LUP 

0.85 0.077 218.8 1148 8.1 5247.2 3.27 
0.85 0.098 283.4 1148 10.3 6687.2 3.32 
0.85 0.018 82.4 1182 1.1 682.0 2.68 
0.85 0.052 236.8 1182 3.0 1924.5 2.73 
0.85 0.069 324.7 1182 3.9 2549.9 2.83 
0.85 0.017 80.0 1182 1.0 629.5 2.82 
0.85 0.038 172.7 1182 2.2 1413.1 2.71 
0.85 0.095 459.1 1182 5.4 3509.0 2.90 
0.85 0.054 243.9 1182 3.0 1977.3 2.74 
0.85 0.078 354.6 1182 4.4 2887.1 2.73 
0.90 0.036 119.5 1182 1.8 1138.0 1.78 
0.90 0.061 208.4 1182 3.0 1945.4 1.81 
0.90 0.063 212.3 1182 3.1 2015.7 1.78 
0.90 0.047 157.8 1182 2.3 1510.2 1.77 
0.90 0.135 469.9 1182 6.6 4301.8 1.85 
0.90 0.064 213.5 1182 3.1 2044.1 1.76 
0.90 0.075 259.0 1182 3.7 2382.2 1.84 
0.90 0.095 329.9 1182 4.7 3036.0 1.84 
0.90 0.035 60.1 1148 3.9 2560.1 2.08 
0.90 0.053 88.1 1148 5.9 3841.6 2.03 
0.90 0.080 144.2 1148 8.9 5796.5 2.20 
0.90 0.067 119.0 1148 7.5 4843.9 2.18 
0.90 0.100 175.1 1148 11.2 7253.8 2.14 
0.90 0.047 79.1 1148 5.2 3405.9 2.06 
0.90 0.063 106.7 1148 7.0 4536.0 2.08 
0.90 0.085 148.9 1148 9.5 6162.6 2.14 
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APPENDIX C: DETAILS OF THE NUMERICAL 
SIMULATIONS PERFORMED IN THE DISSERTATION 

Numerical simulations are used in various parts of this dissertation to verify the 

developed theoretical models/solutions. In this appendix, more details on the numerical 

results and calculations are provided. Numerical grid generation and then computations 

for all the studied cases are carried out using Gambit and Fluent software, respectively. 

Flow normal to ordered array of cylinders (Sections 3.2 and 3.7): 

Although fully-developed solution for normal flow can be found by simulating a single 

unit cell and applying periodic boundary condition, to determine the developing length 

for flow in the medium, as was shown in Figure 16a, a set of 7-10 unit cells in series are 

considered and velocity profiles are compared at the entrance to each unit cell, see Figure 

74. The pressure drops used for calculation of permeability are the values obtained from 

the regions with fully-developed flow. 

The inlet velocity of the media is assumed to be uniform. Constant pressure boundary 

condition is applied at the computational domain outlet. The symmetry boundary 

condition is applied on the side borders of the considered unit cells; this means that 

normal velocity and gradient of parallel component of the velocity on the side borders are 

zero.  

In Figure 74, the comparison of the entrance and exit velocity profile to the fourth (out of 

10) unit cell with  = 0.9 indicates that fully developed condition is achieved after the 
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third row of cylinders. It should be noted that in the unit cell with  = 0.9, the distance 

between the fibers is larger than other cases; thus, has the longest developing length. As 

such, it is expected that a similar trend holds for the rest of the studied cases, i.e., the fully 

developed condition is achieved after the third row of cylinders. 
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Figure 74: Developed velocity profiles in the inlet and outlet of the fourth unit cell with  =0.9. 

Independence of the results from numerical grid size is tested for different cases and the 

size of computational grid used for each geometry is selected such that the maximum 

difference in the predicted values for pressure gradient to be less than 2%. For example, 

Figure 75 illustrates the independency of the calculated values of pressure drop over a 

unit cell with   = 0.9 after a computational grid size of 16000. Moreover, as shown in 

Figure 76, the numerical results are in reasonable agreement with experimental and 

numerical data reported by other; this also confirms the accuracy of the analysis. The 

summary of the calculated results is presented in Table 28. Therefore, a grid size of 
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15,000 – 20,000 is used through the analysis for predicting the flow properties of ordered 

arrays of cylinders. 

Grid size
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Figure 75: The pressure drop over a unit cell with  =0.9 calculated with different number of grids.  
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Figure 76: Comparison between the present numerical results and experimental data, normal flow 
through square arrays of cylinders. 
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Table 28: Important parameters for calculation of normal permeability of square arrays of fibers.  

Porosity 
( ) 

)(cmS  )(cmd
 

inletu

)/( sm  
DU

)/( sm  
)(PaP * 



)/( 2mNs  

K

)( 2m  

0.45 1.195 1 0.05 0.0081 61 0.1 0.00160 
0.65 1.498 1 0.05 0.0166 17.1 0.1 0.0146 
0.8 1.981 1 0.05 0.0248 6.67 0.1 0.0736 

0.85 2.288 1 0.05 0.0281 4.9 0.1 0.1314 
0.9 2.802 1 0.05 0.0322 2.9 0.1 0.3107 

0.95 3.962 1 0.05 0.0374 1.6 0.1 0.9257 
0.98 6.265 1 0.05 0.0420 0.77 0.1 3.4188 

0.995 12.530 1 0.05 0.0460 0.27 0.1 21.3518 

* Pressure drop over the length of the unit cell, i.e., L= S. 

Flow parallel to ordered arrays of cylinders (Sections 3.3 and 3.7): 

The volume between parallel cylinders is considered as the unit cell and the 

computational domain, as was shown in Figure 16. Similar to normal flow through 

ordered arrays of cylinders, uniform velocity at the inlet, constant pressure on the 

computational domain outlet, and the symmetry boundary condition on the side borders 

of the considered unit cells are considered. Therefore, to ensure fully developed condition 

near the outlet of the computational domain, long cylinders are considered in the 

simulations.  

Independency of the simulated results for parallel creeping flow through arrays of 

cylinders with   = 0.9 from the numerical grid size is shown in Figure 77. Moreover, the 

comparison of the present computational results with the numerical results of Sangani 

and Yao [39] in Figure 78 confirms the accuracy of the performed computations. The 

summary of the calculated results is presented in Table 29. 
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Figure 77: The pressure drop over a length of 2cm for square arrays of cylinders with d= 1 cm and 
 =0.9 calculated with different number of grids. 
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Figure 78: Comparison between the present numerical results, experimental data, and the numerical 
results of Sangani and Yao [39] for parallel permeability of square arrays of cylinders. 
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Table 29: The numerical results of parallel permeability in square arrays of fibers, cmd 1  and 

smuinlet /05.0 .  

  )(cmS  )(cm  )/( smUD  )(PaP  *K
0.215 1 5 0.01075 404.3 0.0013 
0.35 1.10 5 0.0175 228.7 0.0038 
0.45 1.19 2 0.0225 56.8 0.0079 
0.55 1.32 5 0.0275 77.6 0.0177 
0.65 1.50 5 0.0325 43 0.0378 
0.8 1.98 5 0.04 12 0.1667 
0.9 2.80 2 0.045 1.33 0.6712 

 

Flow parallel and normal to ordered 2D and 3D arrays of cylinders (Section 3.7): 

Navier-Stokes equations are solved numerically using Fluent [122]. The second order 

upwind scheme is selected to discretize the governing equations and SIMPLE algorithm 

[123] is employed for pressure-velocity coupling. For simple cubic structures, the inlet 

and outlet boundaries of the computational domains are considered to be periodic, i.e., the 

velocity distributions on both boundaries are the same. The symmetry boundary condition 

is applied on the side borders of the considered unit cells; this means that normal velocity 

and gradient of parallel component of the velocity on the side borders are zero. However, 

for 3 dimensional cases, employing the periodic condition leads to a poor convergence 

rate. As a result of our limited computational resources, following our results for 1D 

structures, a set of 7-10 unit cells in series is considered and velocity profiles are 

compared at the entrance to each unit cell for modeling flow normal and parallel to 2D 

structures. For these cases, the inlet velocity of the media is assumed to be uniform. 

Constant pressure boundary condition is applied on the computational domain outlet. The 

pressure drops used for calculation of flow properties are only the values obtained from 
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the developed regions. Typical computational grids used in the analysis are shown in 

Figure 79. 

In spite of the complexity of the computational domain, our analysis showed that the 

number of computational grids used in the analysis does not significantly affect the 

numerical flow-field. For example, in Figure 80, the plotted pressure drops per unit 

length in 3D structures calculated by two different grids confirm that grid size has a 

negligible effect on the numerical results over a wide range of Reynolds numbers. This is 

mainly a result of laminar nature of flow-field without turbulent and major recirculation 

regions. In addition, the very good agreement of the predicted values of permeability for 

SC structures with the results reported by Higdon and Ford [40], shown in Figure 54, 

justifies the accuracy of the present computations. 

Details of the numerical results used for calculating the inertial coefficient in 1D, 2D, and 

3D structures are presented in Table 30. 
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Figure 79: Typical computational domain used for modeling of flow a) through simple cubic; b) 
parallel to 2D; c) transverse to 2D fibrous structures. 
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Figure 80: The pressure drop over a unit cell of simple cubic arrays of cylinders with d= 1 cm and S = 
4 cm for two different Reynolds numbers, calculated with different number of grids. 

Table 30: Summary of the measurements and calculation for calculating flow properties of fibrous 
structures in the moderate range of Reynolds number; the fiber diameter is 10 mm.  

Porosity 
( ) 

Darcy 
velocity 

(m/s) 

Pressure 
drop 
(Pa) 

Length 
(m) 

Density 
(kg/m3) 

Reynolds 
number 

 /U  610/  LUP 

Normal flow, 1D structures 
0.45 0.0001 0.066 0.012 100 0.008 0.8 6.81 
0.45 0.0008 0.662 0.012 100 0.081 8.1 6.80 
0.45 0.0081 6.700 0.012 100 0.815 81.5 6.88 
0.45 0.0815 68.130 0.012 100 8.148 814.8 7.00 
0.45 0.8148 965.950 0.012 100 81.48 8148.0 9.92 
0.65 0.0002 0.017 0.015 100 0.02 1.7 0.68 
0.65 0.0017 0.172 0.015 100 0.17 16.6 0.69 
0.65 0.0166 1.72 0.015 100 1.66 166.1 0.69 
0.65 0.1661 18.49 0.015 100 16.6 1661 0.74 
0.65 0.3323 40.0 0.015 100 33.2 3323 0.80 
0.65 0.6645 87.3 0.015 100 66.4 6645 0.88 
0.65 1.6614 264.1 0.015 100 166.1 16613 1.1 
0.8 0.0002 0.007 0.0198 100 0.02 2.5 0.137 
0.8 0.0025 0.067 0.0198 100 0.25 24.8 0.137 
0.8 0.0248 0.677 0.0198 100 2.48 247.6 0.138 
0.8 0.2476 7.9 0.0198 100 24.76 2476.2 0.161 
0.8 0.9905 40.3 0.0198 100 99.05 9904.9 0.206 
0.8 1.4857 70.9 0.0198 100 148.57 14857.4 0.241 
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Porosity 
( ) 

Darcy 
velocity 

(m/s) 

Pressure 
drop 
(Pa) 

Length 
(m) 

Density 
(kg/m3) 

Reynolds 
number 

 /U  610/  LUP 

0.8 2.4762 142.4 0.0198 100 247.62 24762.3 0.29 
0.9 0.0003 0.003 0.028 100 0.03 3.2 0.033 
0.9 0.0032 0.030 0.028 100 0.32 32.2 0.033 
0.9 0.0322 0.299 0.028 100 3.22 321.5 0.033 
0.9 0.3215 3.43 0.028 100 32.15 3215.4 0.038 
0.9 1.2862 20.51 0.028 100 128.62 12861.7 0.057 
0.9 1.9293 37.90 0.028 100 192.93 19292.5 0.070 

0.95 0.0004 0.0017 0.04 100 0.04 3.7 0.011 
0.95 0.0037 0.0165 0.04 100 0.37 37.4 0.011 
0.95 0.0374 0.168 0.04 100 3.74 373.8 0.013 
0.95 0.3738 2.19 0.04 100 37.38 3738.1 0.015 
0.95 0.7476 5.65 0.04 100 74.76 7476.2 0.019 

Transverse flow through 2D structures 
0.35 0.00009 0.13 0.01 100 0.01 0.9 14.5 
0.35 0.00862 12.54 0.01 100 0.9 86.2 14.5 
0.35 0.08620 127.53 0.01 100 8.6 862.0 14.8 
0.35 0.34479 638.74 0.01 100 34.5 3447.9 18.5 
0.5 0.0002 0.04 0.01 100 0.02 1.8 2.17 
0.5 0.0182 3.96 0.01 100 1.82 181.7 2.18 
0.5 0.1817 44.50 0.01 100 18.17 1816.9 2.45 
0.5 0.3634 101.49 0.01 100 36.34 3633.8 2.79 
0.6 0.0002 0.0207 0.01 100 0.02 2.5 0.84 
0.6 0.025 2.076 0.01 100 2.45 245.4 0.85 
0.6 0.245 25.56 0.01 100 24.54 2453.5 1.04 
0.6 0.491 61.2 0.01 100 49.07 4907.0 1.25 
0.8 0.0004 0.0035 0.01 100 0.04 3.7 0.094 
0.8 0.0373 0.364 0.01 100 3.73 372.7 0.097 
0.8 0.1491 1.611 0.01 100 14.91 1490.7 0.108 
0.8 0.3727 5.046 0.01 100 37.27 3726.8 0.135 
0.8 0.5963 9.205 0.01 100 59.63 5962.8 0.154 

Parallel flow through 2D structures 
0.5 0.000125 0.028 0.015708 100 0.012 1.25 1.43 
0.5 0.0125 2.832 0.015708 100 1.25 125 1.44 
0.5 0.125 30.54 0.015708 100 12.5 1250 1.56 
0.5 0.5 138.2 0.015708 100 50 5000 1.76 
0.6 0.00015 0.018 0.0196 100 0.015 1.5 0.61 
0.6 0.015 1.8 0.0196 100 1.5 150 0.61 
0.6 0.15 19.38 0.0196 100 15 1500 0.66 
0.6 0.3 41.05 0.0196 100 30 3000 0.70 
0.8 0.02 10.21 0.03927 10 0.02 2 0.130 
0.8 0.0002 0.00973 0.03927 100 0.02 2 0.124 
0.8 0.2 11.98 0.03927 100 20 2000 0.153 
0.8 0.12 7.07 0.03927 100 12 1200 0.150 
0.8 0.8 60.45 0.03927 100 80 8000 0.192 
0.9 0.000225 0.00425 0.07854 100 0.0225 2.25 0.0241 
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Porosity 
( ) 

Darcy 
velocity 

(m/s) 

Pressure 
drop 
(Pa) 

Length 
(m) 

Density 
(kg/m3) 

Reynolds 
number 

 /U  610/  LUP 

0.9 0.0225 0.429 0.07854 100 2.25 225 0.0243 
0.9 0.225 5.602 0.07854 100 22.5 2250 0.0317 
0.9 0.45 12.79 0.07854 100 45 4500 0.0362 

Flow through simple cubic (3D) fiber arrangements 
0.37 0.015 0.37 100 0.0006 0.0556 5.6 4.39 
0.37 0.015 3.69 100 0.0056 0.5556 55.6 4.42 
0.37 0.015 41.88 100 0.0556 5.5556 555.6 5.03 
0.37 0.015 61.73 100 0.0778 7.7778 777.8 5.29 
0.59 0.000125 0.01 0.02 100 0.0125 1.25 0.58 
0.59 0.00125 0.14 0.02 100 0.125 12.5 0.58 
0.59 0.025 3.00 0.02 100 2.5 250 0.60 
0.59 0.1 13.66 0.02 100 10 1000 0.68 
0.79 0.00002 0.001 0.03 100 0.002 0.22 0.085 
0.79 0.002 0.057 0.03 100 0.22 22.22 0.085 
0.79 0.022 0.59 0.03 100 2.22 222.22 0.088 
0.79 0.222 7.58 0.03 100 22.22 2222.22 0.11 
0.79 0.311 11.27 0.03 100 31.11 3111.11 0.12 
0.87 0.00003 0.0003 0.04 100 0.003 0.28 0.030 
0.87 0.003 0.03 0.04 100 0.28 28.13 0.030 
0.87 0.03 0.36 0.04 100 2.81 281.2 0.032 
0.87 0.28 4.75 0.04 100 28.13 2812.5 0.042 
0.87 0.45 8.62 0.04 100 45 4500 0.048 

 

 

 

 


